* Module wpylib.db.indexing_float: utility for floating-point (FP)-based

indexing, allowing tolerances to account for imprecise nature of FP
  numbers.

  Initial implementation, rather complicated.
  A simple rounding-based implementation can be put in later.

  Includes initial test.
master
Wirawan Purwanto 12 years ago
parent 4fb16c56b2
commit 099f3e7e06
  1. 166
      db/indexing_float.py
  2. 59
      db/test_indexing_float.py

@ -0,0 +1,166 @@
#
# wpylib.db.indexing_float
# Utilities for indexing based on floating-point values
#
# Wirawan Purwanto
# Created: 20130301
#
"""\
wpylib.db.indexing_float
Utilities for indexing based on floating-point values
"""
import numpy
import sys
def _debug_gen_float_indices1(localvars, debug):
from wpylib.params.params_flat import Parameters as params
L = params(localvars)
if debug > 50:
print "a_sorted = ", L.a_sorted[1:]
print "a_diff = ", L.a_diff
print "a_avg_abs = ", L.a_avg_abs
print "a_rdiff = ", L.a_rdiff
print
#print "rdiff_idx_sorted = ", L.rdiff_idx_sorted # numpy.array(L.rdiff_idx_sorted, dtype=float)
print "rdiff_idx_sorted = ", " ".join([ "%11d" % i for i in L.rdiff_idx_sorted ])
print "too_close = ", " ".join([ "%11d" % int(i) for i in (L.a_rdiff[L.rdiff_idx_sorted] < L.rdiff_threshold) ])
print "a_rdiff(sort) = ", L.a_rdiff[L.rdiff_idx_sorted]
print "a(sort) = ", L.a_sorted[1:][L.rdiff_idx_sorted]
print
def _debug_gen_float_indices2(localvars, debug):
from wpylib.params.params_flat import Parameters as params
L = params(localvars)
if debug > 50:
print
print "a_rdiff aft = ", L.a_rdiff
print "num unique vals = ", L.n_all_unique_vals
print "num already uniq = ", len(L.a_already_unique)
print "unique_vals = ", L.unique_vals[0:L.n_all_unique_vals]
print "unique_vals(sort)= ", numpy.sort(L.unique_vals[0:L.n_all_unique_vals])
def _debug_gen_float_indices_found_duplicates(localvars, debug):
from wpylib.params.params_flat import Parameters as params
L = params(localvars)
if debug > 100:
print "i=", L.i_found, " fused range is ", L.i1, ":", L.i+1
print " rdiff", L.orig_rdiff
print " idx ", L.i1, L.i, ", arr ", L.a_fused_sect
print " avg ", L.avg
def _debug_gen_float_indices_results(localvars, debug):
from wpylib.params.params_flat import Parameters as params
L = params(localvars)
if debug > 50:
print
print "rslt_vals = ", L.rslt_vals
print "unique_map = ", L.unique_map
def generate_float_indices(arr, rdiff_threshold, debug=0):
"""Consolidates floating point values to `unique' values whose relative
differences are greater than a specified threshold (rdiff_threshold).
Values that are so close together will fused to their average.
The input must be a one-dimensional array or list or a list-like iterable.
"""
from wpylib.db.result_base import result_base
sample = numpy.array([arr[0]])
a_sorted = numpy.empty(len(arr)+1, dtype=sample.dtype)
a_sorted[1:] = arr
a_sorted[1:].sort(kind='heapsort')
a_sorted[0] = a_sorted[1] # dummy data
a_diff = numpy.diff(a_sorted) # == a_sorted[1:] - a_sorted[:-1]
a_avg_abs = (numpy.abs(a_sorted[1:]) + numpy.abs(a_sorted[:-1])) * 0.5
a_rdiff = numpy.abs(a_diff) / a_avg_abs
# hack the first rdiff since this element *must* always be present,
# so this trick marks it as "unique":
a_rdiff[0] = rdiff_threshold*100
# free up the memory:
if not debug:
a_diff = None
a_avg_abs = None
# Elements whose rdiff < rdiff_cutoff should be consolidated.
# Since there is no easy way to find these elements in bulk,
# I resort to "sorting": :(
rdiff_idx_sorted = numpy.argsort(a_rdiff, kind='mergesort')
_debug_gen_float_indices1(locals(), debug)
imax = len(rdiff_idx_sorted)
# unique_map: mapping from original indices to unique indices
unique_map = {}
# unique_set: set of unique-ized elements, excluding those that
# are distinct by their numerical distances
unique_vals = numpy.empty((len(arr),), dtype= sample.dtype) # max len
n_unique_vals = 0
rslt = None
for (last_idx,i) in enumerate(rdiff_idx_sorted):
if a_rdiff[i] > rdiff_threshold:
# Stop, all the rest of the values are unique.
break
elif a_rdiff[i] == -1:
continue
else:
# If two values are adjacent (e.g. in this case
# a_sorted[i] and a_sorted[i+1] -- note the dummy value
# at element 0), there may be more than one values like that,
# so we need to take care of that too.
# This is why the lower bound of the indices below is "i1"
# while the upper is "i".
i_found = i
i1 = i
while i1 > 0 and a_rdiff[i1-1] <= rdiff_threshold: i1 -= 1
i += 1
while i < imax and a_rdiff[i] <= rdiff_threshold: i += 1
orig_rdiff = a_rdiff[i1-1:i].copy()
a_rdiff[i1-1:i] = -1
a_fused_sect = a_sorted[i1:i+1]
avg = numpy.mean(a_fused_sect)
unique_vals[n_unique_vals] = avg
for a in a_fused_sect:
unique_map[a] = n_unique_vals
n_unique_vals += 1
_debug_gen_float_indices_found_duplicates(locals(), debug)
# unique_vals will contain the unique elements.
# - Then, copy over the rest elements who are already unique
# - Also, complete the value-to-index lookup
a_already_unique = [ a_sorted[i+1] for i in rdiff_idx_sorted[last_idx:] if a_rdiff[i] != -1 ]
n_all_unique_vals = n_unique_vals + len(a_already_unique)
unique_vals[n_unique_vals:n_all_unique_vals] = a_already_unique
_debug_gen_float_indices2(locals(), debug)
dn = 0
for i in rdiff_idx_sorted[last_idx:]:
if a_rdiff[i] == -1: continue
a = a_sorted[i+1]
unique_map[a] = n_unique_vals + dn
dn += 1
# Sort the indices based on the unique value
rslt_sort_idx = unique_vals[:n_all_unique_vals].argsort(kind='heapsort')
rslt_sort_ridx = dict((b,a) for (a,b) in enumerate(rslt_sort_idx))
# Update the value-to-index lookup and return the sorted index array
for a in unique_map.keys():
#unique_map[a] = rslt_sort_idx[unique_map[a]]
unique_map[a] = rslt_sort_ridx[unique_map[a]]
rslt_vals = unique_vals[rslt_sort_idx]
_debug_gen_float_indices_results(locals(), debug)
return result_base(
# list of unique indices, sorted in ascending order:
vals=rslt_vals,
# mapping from less-unique values to the index of the new (unique-ized) new , sorted in ascending order
index_mapping=unique_map,
)

@ -0,0 +1,59 @@
from numpy import array, concatenate
from wpylib.db.indexing_float import generate_float_indices
indices1 = array([ 0.80038202, 0.28583295, 0.13505145, 0.79425102, 0.52347217, 0.47955401, 0.07961833, 0.1024241 , 0.26336713, 0.15990201, 0.81311686, 0.98632763, 0.08275991,
0.56862337, 0.5679713 , 0.04377884, 0.93023717, 0.60270102, 0.24538933, 0.63922544])
indices2 = array([ 0.69053462, 0.09864655, 0.86209023, 0.26140917, 0.8086512 , 0.13796145, 0.1770305 , 0.05061917, 0.81191537, 0.72801096, 0.01129504, 0.13962617, 0.56217892,
0.94299591, 0.99302594, 0.01167897, 0.54827444, 0.20160252, 0.86603525, 0.20260494])
def Test_1():
indices_raw = concatenate((indices1, indices2))
keys1 = numpy.sort(indices_raw)
keys1_test10 = keys1[-10:]
ans = generate_float_indices(keys1_test10, 1e-2, debug=101)
"""ans must be:
{
'vals': array([ 0.80038202, 0.81122781, 0.86406274, 0.93023717, 0.94299591, 0.98967679]),
'index_mapping': \
{0.80038201815850551: 0,
0.80865119885060532: 1,
0.81191536625506044: 1,
0.8131168633197402: 1,
0.8620902343091833: 2,
0.86603524560901635: 2,
0.93023716796725509: 3,
0.94299590915079168: 4,
0.98632763033630222: 5,
0.99302594015368861: 5}
}
"""
return ans
def Test_1b():
indices_raw = concatenate((indices1, indices2))
keys1 = numpy.sort(indices_raw)
keys1_test10 = concatenate((keys1[-10:], [1.03]))
ans = generate_float_indices(keys1_test10, 1e-2, debug=101)
"""ans must be:
{
'vals': array([ 0.80038202, 0.81122781, 0.86406274, 0.93023717, 0.94299591, 0.98967679, 1.03 ]),
'index_mapping': \
{0.80038202000000003: 0,
0.80865120000000001: 1,
0.81191537000000003: 1,
0.81311686000000005: 1,
0.86209022999999996: 2,
0.86603525000000003: 2,
0.93023716999999995: 3,
0.94299591000000005: 4,
0.98632763000000001: 5,
0.99302594: 5,
1.03: 6}
}
"""
return ans
Loading…
Cancel
Save