indexing, allowing tolerances to account for imprecise nature of FP numbers. Initial implementation, rather complicated. A simple rounding-based implementation can be put in later. Includes initial test.master
parent
4fb16c56b2
commit
099f3e7e06
2 changed files with 225 additions and 0 deletions
@ -0,0 +1,166 @@ |
||||
# |
||||
# wpylib.db.indexing_float |
||||
# Utilities for indexing based on floating-point values |
||||
# |
||||
# Wirawan Purwanto |
||||
# Created: 20130301 |
||||
# |
||||
|
||||
"""\ |
||||
wpylib.db.indexing_float |
||||
Utilities for indexing based on floating-point values |
||||
""" |
||||
|
||||
import numpy |
||||
import sys |
||||
|
||||
|
||||
def _debug_gen_float_indices1(localvars, debug): |
||||
from wpylib.params.params_flat import Parameters as params |
||||
L = params(localvars) |
||||
if debug > 50: |
||||
print "a_sorted = ", L.a_sorted[1:] |
||||
print "a_diff = ", L.a_diff |
||||
print "a_avg_abs = ", L.a_avg_abs |
||||
print "a_rdiff = ", L.a_rdiff |
||||
print |
||||
#print "rdiff_idx_sorted = ", L.rdiff_idx_sorted # numpy.array(L.rdiff_idx_sorted, dtype=float) |
||||
print "rdiff_idx_sorted = ", " ".join([ "%11d" % i for i in L.rdiff_idx_sorted ]) |
||||
print "too_close = ", " ".join([ "%11d" % int(i) for i in (L.a_rdiff[L.rdiff_idx_sorted] < L.rdiff_threshold) ]) |
||||
print "a_rdiff(sort) = ", L.a_rdiff[L.rdiff_idx_sorted] |
||||
print "a(sort) = ", L.a_sorted[1:][L.rdiff_idx_sorted] |
||||
print |
||||
|
||||
def _debug_gen_float_indices2(localvars, debug): |
||||
from wpylib.params.params_flat import Parameters as params |
||||
L = params(localvars) |
||||
if debug > 50: |
||||
print |
||||
print "a_rdiff aft = ", L.a_rdiff |
||||
print "num unique vals = ", L.n_all_unique_vals |
||||
print "num already uniq = ", len(L.a_already_unique) |
||||
print "unique_vals = ", L.unique_vals[0:L.n_all_unique_vals] |
||||
print "unique_vals(sort)= ", numpy.sort(L.unique_vals[0:L.n_all_unique_vals]) |
||||
|
||||
def _debug_gen_float_indices_found_duplicates(localvars, debug): |
||||
from wpylib.params.params_flat import Parameters as params |
||||
L = params(localvars) |
||||
if debug > 100: |
||||
print "i=", L.i_found, " fused range is ", L.i1, ":", L.i+1 |
||||
print " rdiff", L.orig_rdiff |
||||
print " idx ", L.i1, L.i, ", arr ", L.a_fused_sect |
||||
print " avg ", L.avg |
||||
|
||||
def _debug_gen_float_indices_results(localvars, debug): |
||||
from wpylib.params.params_flat import Parameters as params |
||||
L = params(localvars) |
||||
if debug > 50: |
||||
print |
||||
print "rslt_vals = ", L.rslt_vals |
||||
print "unique_map = ", L.unique_map |
||||
|
||||
|
||||
|
||||
def generate_float_indices(arr, rdiff_threshold, debug=0): |
||||
"""Consolidates floating point values to `unique' values whose relative |
||||
differences are greater than a specified threshold (rdiff_threshold). |
||||
Values that are so close together will fused to their average. |
||||
|
||||
The input must be a one-dimensional array or list or a list-like iterable. |
||||
""" |
||||
from wpylib.db.result_base import result_base |
||||
sample = numpy.array([arr[0]]) |
||||
a_sorted = numpy.empty(len(arr)+1, dtype=sample.dtype) |
||||
a_sorted[1:] = arr |
||||
a_sorted[1:].sort(kind='heapsort') |
||||
a_sorted[0] = a_sorted[1] # dummy data |
||||
a_diff = numpy.diff(a_sorted) # == a_sorted[1:] - a_sorted[:-1] |
||||
a_avg_abs = (numpy.abs(a_sorted[1:]) + numpy.abs(a_sorted[:-1])) * 0.5 |
||||
a_rdiff = numpy.abs(a_diff) / a_avg_abs |
||||
# hack the first rdiff since this element *must* always be present, |
||||
# so this trick marks it as "unique": |
||||
a_rdiff[0] = rdiff_threshold*100 |
||||
# free up the memory: |
||||
if not debug: |
||||
a_diff = None |
||||
a_avg_abs = None |
||||
# Elements whose rdiff < rdiff_cutoff should be consolidated. |
||||
# Since there is no easy way to find these elements in bulk, |
||||
# I resort to "sorting": :( |
||||
rdiff_idx_sorted = numpy.argsort(a_rdiff, kind='mergesort') |
||||
|
||||
_debug_gen_float_indices1(locals(), debug) |
||||
|
||||
imax = len(rdiff_idx_sorted) |
||||
# unique_map: mapping from original indices to unique indices |
||||
unique_map = {} |
||||
# unique_set: set of unique-ized elements, excluding those that |
||||
# are distinct by their numerical distances |
||||
unique_vals = numpy.empty((len(arr),), dtype= sample.dtype) # max len |
||||
n_unique_vals = 0 |
||||
rslt = None |
||||
for (last_idx,i) in enumerate(rdiff_idx_sorted): |
||||
if a_rdiff[i] > rdiff_threshold: |
||||
# Stop, all the rest of the values are unique. |
||||
break |
||||
elif a_rdiff[i] == -1: |
||||
continue |
||||
else: |
||||
# If two values are adjacent (e.g. in this case |
||||
# a_sorted[i] and a_sorted[i+1] -- note the dummy value |
||||
# at element 0), there may be more than one values like that, |
||||
# so we need to take care of that too. |
||||
# This is why the lower bound of the indices below is "i1" |
||||
# while the upper is "i". |
||||
i_found = i |
||||
i1 = i |
||||
|
||||
while i1 > 0 and a_rdiff[i1-1] <= rdiff_threshold: i1 -= 1 |
||||
i += 1 |
||||
while i < imax and a_rdiff[i] <= rdiff_threshold: i += 1 |
||||
orig_rdiff = a_rdiff[i1-1:i].copy() |
||||
a_rdiff[i1-1:i] = -1 |
||||
|
||||
a_fused_sect = a_sorted[i1:i+1] |
||||
avg = numpy.mean(a_fused_sect) |
||||
unique_vals[n_unique_vals] = avg |
||||
for a in a_fused_sect: |
||||
unique_map[a] = n_unique_vals |
||||
n_unique_vals += 1 |
||||
|
||||
_debug_gen_float_indices_found_duplicates(locals(), debug) |
||||
|
||||
# unique_vals will contain the unique elements. |
||||
# - Then, copy over the rest elements who are already unique |
||||
# - Also, complete the value-to-index lookup |
||||
a_already_unique = [ a_sorted[i+1] for i in rdiff_idx_sorted[last_idx:] if a_rdiff[i] != -1 ] |
||||
n_all_unique_vals = n_unique_vals + len(a_already_unique) |
||||
unique_vals[n_unique_vals:n_all_unique_vals] = a_already_unique |
||||
_debug_gen_float_indices2(locals(), debug) |
||||
|
||||
dn = 0 |
||||
for i in rdiff_idx_sorted[last_idx:]: |
||||
if a_rdiff[i] == -1: continue |
||||
a = a_sorted[i+1] |
||||
unique_map[a] = n_unique_vals + dn |
||||
dn += 1 |
||||
|
||||
# Sort the indices based on the unique value |
||||
rslt_sort_idx = unique_vals[:n_all_unique_vals].argsort(kind='heapsort') |
||||
rslt_sort_ridx = dict((b,a) for (a,b) in enumerate(rslt_sort_idx)) |
||||
|
||||
# Update the value-to-index lookup and return the sorted index array |
||||
for a in unique_map.keys(): |
||||
#unique_map[a] = rslt_sort_idx[unique_map[a]] |
||||
unique_map[a] = rslt_sort_ridx[unique_map[a]] |
||||
rslt_vals = unique_vals[rslt_sort_idx] |
||||
|
||||
_debug_gen_float_indices_results(locals(), debug) |
||||
|
||||
return result_base( |
||||
# list of unique indices, sorted in ascending order: |
||||
vals=rslt_vals, |
||||
# mapping from less-unique values to the index of the new (unique-ized) new , sorted in ascending order |
||||
index_mapping=unique_map, |
||||
) |
||||
|
@ -0,0 +1,59 @@ |
||||
from numpy import array, concatenate |
||||
from wpylib.db.indexing_float import generate_float_indices |
||||
|
||||
indices1 = array([ 0.80038202, 0.28583295, 0.13505145, 0.79425102, 0.52347217, 0.47955401, 0.07961833, 0.1024241 , 0.26336713, 0.15990201, 0.81311686, 0.98632763, 0.08275991, |
||||
0.56862337, 0.5679713 , 0.04377884, 0.93023717, 0.60270102, 0.24538933, 0.63922544]) |
||||
indices2 = array([ 0.69053462, 0.09864655, 0.86209023, 0.26140917, 0.8086512 , 0.13796145, 0.1770305 , 0.05061917, 0.81191537, 0.72801096, 0.01129504, 0.13962617, 0.56217892, |
||||
0.94299591, 0.99302594, 0.01167897, 0.54827444, 0.20160252, 0.86603525, 0.20260494]) |
||||
|
||||
|
||||
def Test_1(): |
||||
indices_raw = concatenate((indices1, indices2)) |
||||
keys1 = numpy.sort(indices_raw) |
||||
keys1_test10 = keys1[-10:] |
||||
|
||||
ans = generate_float_indices(keys1_test10, 1e-2, debug=101) |
||||
"""ans must be: |
||||
{ |
||||
'vals': array([ 0.80038202, 0.81122781, 0.86406274, 0.93023717, 0.94299591, 0.98967679]), |
||||
'index_mapping': \ |
||||
{0.80038201815850551: 0, |
||||
0.80865119885060532: 1, |
||||
0.81191536625506044: 1, |
||||
0.8131168633197402: 1, |
||||
0.8620902343091833: 2, |
||||
0.86603524560901635: 2, |
||||
0.93023716796725509: 3, |
||||
0.94299590915079168: 4, |
||||
0.98632763033630222: 5, |
||||
0.99302594015368861: 5} |
||||
} |
||||
""" |
||||
return ans |
||||
|
||||
|
||||
def Test_1b(): |
||||
indices_raw = concatenate((indices1, indices2)) |
||||
keys1 = numpy.sort(indices_raw) |
||||
keys1_test10 = concatenate((keys1[-10:], [1.03])) |
||||
|
||||
ans = generate_float_indices(keys1_test10, 1e-2, debug=101) |
||||
"""ans must be: |
||||
{ |
||||
'vals': array([ 0.80038202, 0.81122781, 0.86406274, 0.93023717, 0.94299591, 0.98967679, 1.03 ]), |
||||
'index_mapping': \ |
||||
{0.80038202000000003: 0, |
||||
0.80865120000000001: 1, |
||||
0.81191537000000003: 1, |
||||
0.81311686000000005: 1, |
||||
0.86209022999999996: 2, |
||||
0.86603525000000003: 2, |
||||
0.93023716999999995: 3, |
||||
0.94299591000000005: 4, |
||||
0.98632763000000001: 5, |
||||
0.99302594: 5, |
||||
1.03: 6} |
||||
} |
||||
""" |
||||
return ans |
||||
|
Loading…
Reference in new issue