* Imported more recent function fitting facility from Cr2 project.

master
Wirawan Purwanto 10 years ago
parent e37110b08b
commit e46fcec698
  1. 14
      math/fitting/__init__.py
  2. 141
      math/fitting/funcs_pec.py
  3. 49
      math/fitting/funcs_physics.py
  4. 276
      math/fitting/funcs_simple.py

@ -104,7 +104,8 @@ def fit_func(Funct, Data=None, Guess=None, Params=None,
N is the dimensionality of the domain, while N is the dimensionality of the domain, while
M is the number of data points, whose count must be equal to the M is the number of data points, whose count must be equal to the
size of y data below. size of y data below.
For a 2-D fitting, for example, x should be a column array. For a 2-D curve (y = f(x)) fitting, for example,
x should be a column array.
An input guess for the parameters can be specified via Guess argument. An input guess for the parameters can be specified via Guess argument.
It is an ordered list of scalar values for these parameters. It is an ordered list of scalar values for these parameters.
@ -120,8 +121,8 @@ def fit_func(Funct, Data=None, Guess=None, Params=None,
If "dy" is specified, then "w" is defined to be (1.0 / dy**2), per usual If "dy" is specified, then "w" is defined to be (1.0 / dy**2), per usual
convention. convention.
Inspect Poly_base, Poly_order2, and other similar function classes in this Inspect Poly_base, Poly_order2, and other similar function classes in the
module to see the example of the Funct function. funcs_poly module to see the example of the Funct function.
The measurement (input) datasets, against which the function is to be fitted, The measurement (input) datasets, against which the function is to be fitted,
can be specified in one of two ways: can be specified in one of two ways:
@ -209,7 +210,9 @@ def fit_func(Funct, Data=None, Guess=None, Params=None,
# Try to provide an initial guess # Try to provide an initial guess
# This is an older version with y-only argument # This is an older version with y-only argument
Guess = Funct.Guess(y) Guess = Funct.Guess(y)
elif Guess == None: # VERY OLD, DO NOT USE ANYMORE! elif Guess == None:
# VERY OLD, DO NOT USE ANYMORE! Will likely not work for anythingnonlinear
# functions.
Guess = [ y.mean() ] + [0.0, 0.0] * len(x) Guess = [ y.mean() ] + [0.0, 0.0] * len(x)
if use_lmfit: if use_lmfit:
@ -471,7 +474,8 @@ class fit_func_base(object):
- TODO: dict-like Guess should be made possible. - TODO: dict-like Guess should be made possible.
- otherwise, the guess values will be used as the initial values. - otherwise, the guess values will be used as the initial values.
Refer to various function objects in wpylib.math.fitting.funcs_simple
for actual examples of how to use and create your own fit_func_base object.
""" """
class multi_fit_opts(dict): class multi_fit_opts(dict):
"""A class for defining default control parameters for different fit methods. """A class for defining default control parameters for different fit methods.

@ -0,0 +1,141 @@
#
# wpylib.math.fitting.funcs_pec module
# Created: 20150521
# Wirawan Purwanto
#
# Imported 20150521 from Cr2_analysis_cbs.py
# (dated 20141017, CVS rev 1.143).
#
"""
wpylib.math.fitting.funcs_pec module
A library of simple f(x) functions for PEC fitting
For use with OO-style x-y curve fitting interface.
"""
import numpy
class harm_fit_func(fit_func_base):
"""Harmonic function object.
For use with fit_func function on a PEC.
Functional form:
E0 + 0.5 * k * (x - re)**2
Coefficients:
* C[0] = energy minimum
* C[1] = spring constant
* C[2] = equilibrium distance
"""
dim = 1 # a function with 1-D domain
param_names = ('E0', 'k', 'r0')
def __call__(self, C, x):
xdisp = (x[0] - C[2])
y = C[0] + 0.5 * C[1] * xdisp**2
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
fit_rslt = fit_harm(x[0], y)
self.guess_params = tuple(fit_rslt[0])
return self.guess_params
class harmcube_fit_func(fit_func_base):
"""Harmonic + cubic term function object.
For use with fit_func function on a PEC.
Functional form:
E0 + 0.5 * k * (x - re)**2 + cub * (x - re)**3;
Coefficients:
* C[0] = energy minimum
* C[1] = spring constant
* C[2] = equilibrium distance
* C[3] = nonlinear (cubic) constant
"""
dim = 1 # a function with 1-D domain
param_names = ('E0', 'k', 'r0', 'c3')
def __call__(self, C, x):
xdisp = (x[0] - C[2])
y = C[0] + 0.5 * C[1] * xdisp**2 + C[3] * xdisp**3
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
fit_rslt = fit_harm(x[0], y)
self.guess_params = tuple(fit_rslt[0]) + (0,)
return self.guess_params
def Guess_xy_old(self, x, y):
imin = numpy.argmin(y)
return (y[imin], 2, x[0][imin], 0.00001)
class morse2_fit_func(fit_func_base):
"""Morse2 function object.
For use with fit_func function.
Functional form:
E0 + 0.5 * k / a**2 * (1 - exp(-a * (x - re)))**2
Coefficients:
* C[0] = energy minimum
* C[1] = spring constant
* C[2] = equilibrium distance
* C[3] = nonlinear constant
"""
dim = 1 # a function with 1-D domain
param_names = ('E0', 'k', 'r0', 'a')
def __call__(self, C, x):
from numpy import exp
E0, k, r0, a = self.get_params(C, *(self.param_names))
y = E0 + 0.5 * k / a**2 * (1 - exp(-a * (x[0] - r0)))**2
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
imin = numpy.argmin(y)
harm_params = fit_harm(x[0], y)
if self.debug >= 10:
print "Initial guess by fit_harm gives: ", harm_params
self.guess_params = (y[imin], harm_params[0][1], x[0][imin], 0.01 * harm_params[0][1])
return self.guess_params
def Guess_xy_old(self, x, y):
imin = numpy.argmin(y)
return (y[imin], 2, x[0][imin], 0.01)
class ext3Bmorse2_fit_func(fit_func_base):
"""ext3Bmorse2 function object.
For use with fit_func function.
Functional form:
E0 + 0.5 * k / a**2 * (1 - exp(-a * (x - re)))**2
+ C3 * (1 - exp(-a * (x - re)))**3
Coefficients:
* C[0] = energy minimum
* C[1] = spring constant
* C[2] = equilibrium distance
* C[3] = nonlinear constant
* C[4] = coefficient of cubic term
"""
dim = 1 # a function with 1-D domain
def __call__(self, C, x):
from numpy import exp
E = 1 - exp(-C[3] * (x[0] - C[2]))
y = C[0] + 0.5 * C[1] / C[3]**2 * E**2 + C[4] * E**3
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
imin = numpy.argmin(y)
harm_params = fit_harm(x[0], y)
if self.debug >= 10:
print "Initial guess by fit_harm gives: ", harm_params
self.guess_params = (y[imin], harm_params[0][1], x[0][imin], 0.01 * harm_params[0][1], 0)
return self.guess_params

@ -0,0 +1,49 @@
#
# wpylib.math.fitting.funcs_physics module
# Created: 20150521
# Wirawan Purwanto
#
# Imported 20150521 from Cr2_analysis_cbs.py
# (dated 20141017, CVS rev 1.143).
#
"""
wpylib.math.fitting.funcs_physics module
A library of simple f(x) functions for physics-related common functional fitting
For use with OO-style x-y curve fitting interface.
"""
import numpy
class FermiDirac_fit_func(fit_func_base):
"""Fermi-Dirac function object.
For use with fit_func function.
Functional form:
C[0] * (exp((x - C[1]) / C[2]) + 1)^-1
Coefficients:
* C[0] = amplitude
* C[1] = transition "temperature"
* C[2] = "smearing temperature"
"""
dim = 1 # a function with 1-D domain
param_names = ('A', 'F', 'T')
# FIXME: Not good yet!!!
F_guess = 1.9
T_guess = 0.05
def __call__(self, C, x):
from numpy import exp
A, F, T = self.get_params(C, *(self.param_names))
y = A * (exp((x[0] - F) / T) + 1)**(-1)
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
imin = numpy.argmin(y)
self.guess_params = (y[imin], self.F_guess, self.T_guess)
return self.guess_params

@ -0,0 +1,276 @@
#
# wpylib.math.fitting.funcs_simple module
# Created: 20150520
# Wirawan Purwanto
#
# Imported 20150520 from Cr2_analysis_cbs.py
# (dated 20141017, CVS rev 1.143).
#
"""
wpylib.math.fitting.funcs_simple module
A library of simple f(x) functions for fitting
For use with OO-style x-y curve fitting interface.
"""
import numpy
# Some simple function fitting--to aid fitting the complex ones later
def fit_linear(x, y):
"""Warning: the ansatz for fitting is
C[0] + C[1]*x
so I have to reverse the order of fit parameters.
"""
rslt = numpy.polyfit(x, y, 1, full=True)
return (rslt[0][::-1],) + rslt
def fit_harm(x, y):
"""Do a quadratic fit using poly fit and return it in terms of coeffs
like this one:
C0 + 0.5 * C1 * (x - C2)**2
=> 0.5*C1*x**2 - C1*C2*x + (C0 + 0.5 * C1 * C2**2)
Polyfit gives:
a * x**2 + b * x + c
Equating the two, we get:
C1 = 2 * a
C2 = -b/C1
C0 = c - 0.5*C1*C2**2
This function returns the recast parameters plus the original
fit output.
"""
rslt = numpy.polyfit(x, y, 2, full=True)
(a,b,c) = rslt[0]
C1 = 2*a
C2 = -b/C1
C0 = c - 0.5*C1*C2**2
return ((C0,C1,C2),) + rslt
# fit_func-style functional ansatz
class const_fit_func(fit_func_base):
"""Constant function object.
For use with fit_func function on a PEC.
Functional form:
C[0]
Coefficients:
* C[0] = the constant sought
"""
dim = 1 # a function with 1-D domain
param_names = ('c')
def __call__(self, C, x):
from numpy import exp
y = C[0]
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
self.guess_params = (numpy.average(y),)
return self.guess_params
class linear_fit_func(fit_func_base):
"""Linear function object.
For use with fit_func function.
Functional form:
a + b * x
Coefficients:
* C[0] = a
* C[1] = b
"""
dim = 1 # a function with 1-D domain
param_names = ('a', 'b')
def __call__(self, C, x):
y = C[0] + C[1] * x[0]
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
fit_rslt = fit_linear(x[0], y)
self.guess_params = tuple(fit_rslt[0])
return self.guess_params
class linear_leastsq_fit_func(linear_fit_func):
def fit(self, x, y, dy=None, fit_opts=None, Funct_hook=None, Guess=None):
from wpylib.math.fitting.linear import linregr2d_SZ
# Changed from:
# rslt = fit_linear_weighted(x,y,dy)
# to:
rslt = (x, y, sigma=None)
self.last_fit = rslt[1]
# Retrofit for API compatibility: not necessarily meaningful
self.guess_params = rslt[0]
return rslt[0]
class exp_fit_func(fit_func_base):
"""Exponential function object.
For use with fit_func function.
Functional form:
C[0] * (exp(C[1] * (x - C[2]))
Coefficients:
* C[0] = amplitude
* C[1] = damping factor
* C[2] = offset
"""
dim = 1 # a function with 1-D domain
param_names = ['A', 'B', 'x0']
A_guess = -2.62681
B_guess = -9.05046
x0_guess = 1.57327
def __call__(self, C, x):
from numpy import exp
A, B, x0 = self.get_params(C, *(self.param_names))
y = A * exp(B * (x[0] - x0))
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
from numpy import abs
#y_abs = abs(y)
# can do linear fit to guess the params,
# but how to separate A and B*x0, I don't know.
#imin = numpy.argmin(y)
self.guess_params = (self.A_guess, self.B_guess, self.x0_guess)
return self.guess_params
class expm_fit_func(exp_fit_func):
"""Similar to exp_fit_func but the exponent is always negative.
"""
def __call__(self, C, x):
from numpy import exp,abs
A, B, x0 = self.get_params(C, *(self.param_names))
y = A * exp(-abs(B) * (x[0] - x0))
self.func_call_hook(C, x, y)
return y
class powx_fit_func(fit_func_base):
"""Power of x function object.
For use with fit_func function.
Functional form:
C[0] * ((x - C[2])**C[1])
Coefficients:
* C[0] = amplitude
* C[1] = exponent (< 0)
* C[2] = offset
"""
dim = 1 # a function with 1-D domain
param_names = ['A', 'B', 'x0']
A_guess = -2.62681
B_guess = -9.05046
x0_guess = 1.57327
def __call__(self, C, x):
from numpy import exp
A, B, x0 = self.get_params(C, *(self.param_names))
y = A * (x[0] - x0)**B
self.func_call_hook(C, x, y)
return y
def Guess_xy(self, x, y):
from numpy import abs
#y_abs = abs(y)
# can do linear fit to guess the params,
# but how to separate A and B*x0, I don't know.
#imin = numpy.argmin(y)
self.guess_params = (self.A_guess, self.B_guess, self.x0_guess)
return self.guess_params
class invx_fit_func(powx_fit_func):
"""Inverse of x function object that leads to 0 as x->infinity.
For use with fit_func function.
Functional form:
C[0] * ((x - C[2])**C[1])
Specialized for CBX1 extrapolation
Coefficients:
* C[0] = amplitude (< 0)
* C[1] = exponent (< 0)
* C[2] = offset (> 0)
"""
"""
/home/wirawan/Work/GAFQMC/expt/qmc/Cr2/CBS-TZ-QZ/UHF-CBS/20140128/Exp-CBX1.d/fit-invx.plt
Iteration 154
WSSR : 0.875715 delta(WSSR)/WSSR : -9.96404e-06
delta(WSSR) : -8.72566e-06 limit for stopping : 1e-05
lambda : 0.00174063
resultant parameter values
A = -29.7924
B = -13.2967
x0 = 0.399396
After 154 iterations the fit converged.
final sum of squares of residuals : 0.875715
rel. change during last iteration : -9.96404e-06
degrees of freedom (FIT_NDF) : 2
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.661708
variance of residuals (reduced chisquare) = WSSR/ndf : 0.437858
Final set of parameters Asymptotic Standard Error
======================= ==========================
A = -29.7924 +/- 8027 (2.694e+04%)
B = -13.2967 +/- 196.1 (1474%)
x0 = 0.399396 +/- 21.4 (5357%)
correlation matrix of the fit parameters:
A B x0
A 1.000
B 1.000 1.000
x0 1.000 1.000 1.000
For some reason the fit code in python gives:
A,B,x0 = (-7028.1498486021028, -16.916447508009664, 2.2572321406455487e-06)
but they fit almost exactly the same in the region 1.8 <= r <= 3.0.
"""
A_guess = -29.7924
B_guess = -13.2967
x0_guess = 0.399396
def __init__(self):
from lmfit import Parameters
self.fit_method = "lmfit:leastsq"
p = Parameters()
p.add_many(
# (Name, Value, Vary, Min, Max, Expr)
('A', -2.6, True, -1e6, -1e-9, None),
('B', -2.0, True, None, -1e-9, None),
('x0', 1.9, True, 1e-6, None, None),
# The values are just a placeholder. They will be set later.
)
self.Params = p
Loading…
Cancel
Save