|  |  |  | @ -158,7 +158,7 @@ def fit_func(Funct, Data=None, Guess=None, x=None, y=None, | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   """ | 
			
		
	
		
			
				
					|  |  |  |  |   global last_fit_rslt, last_chi_sqr | 
			
		
	
		
			
				
					|  |  |  |  |   from scipy.optimize import fmin, leastsq, anneal | 
			
		
	
		
			
				
					|  |  |  |  |   from scipy.optimize import fmin, fmin_bfgs, leastsq, anneal | 
			
		
	
		
			
				
					|  |  |  |  |   # We want to minimize this error: | 
			
		
	
		
			
				
					|  |  |  |  |   if Data != None: # an alternative way to specifying x and y | 
			
		
	
		
			
				
					|  |  |  |  |     y = Data[0] | 
			
		
	
	
		
			
				
					|  |  |  | @ -200,8 +200,9 @@ def fit_func(Funct, Data=None, Guess=None, x=None, y=None, | 
			
		
	
		
			
				
					|  |  |  |  |                    full_output=1, | 
			
		
	
		
			
				
					|  |  |  |  |                    **opts | 
			
		
	
		
			
				
					|  |  |  |  |                    ) | 
			
		
	
		
			
				
					|  |  |  |  |     keys = ('xopt', 'cov_x', 'infodict', 'mesg', 'ier') | 
			
		
	
		
			
				
					|  |  |  |  |     keys = ('xopt', 'cov_x', 'infodict', 'mesg', 'ier') # ier = error message code from MINPACK | 
			
		
	
		
			
				
					|  |  |  |  |   elif method == 'fmin': | 
			
		
	
		
			
				
					|  |  |  |  |     # Nelder-Mead Simplex algorithm | 
			
		
	
		
			
				
					|  |  |  |  |     rslt = fmin(fun_err2, | 
			
		
	
		
			
				
					|  |  |  |  |                 x0=Guess, # initial coefficient guess | 
			
		
	
		
			
				
					|  |  |  |  |                 args=(x,y), # data onto which the function is fitted | 
			
		
	
	
		
			
				
					|  |  |  | @ -209,6 +210,15 @@ def fit_func(Funct, Data=None, Guess=None, x=None, y=None, | 
			
		
	
		
			
				
					|  |  |  |  |                 **opts | 
			
		
	
		
			
				
					|  |  |  |  |                ) | 
			
		
	
		
			
				
					|  |  |  |  |     keys = ('xopt', 'fopt', 'iter', 'funcalls', 'warnflag', 'allvecs') | 
			
		
	
		
			
				
					|  |  |  |  |   elif method == 'fmin_bfgs' or method == 'bfgs': | 
			
		
	
		
			
				
					|  |  |  |  |     # Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm | 
			
		
	
		
			
				
					|  |  |  |  |     rslt = fmin_bfgs(fun_err2, | 
			
		
	
		
			
				
					|  |  |  |  |                      x0=Guess, # initial coefficient guess | 
			
		
	
		
			
				
					|  |  |  |  |                      args=(x,y), # data onto which the function is fitted | 
			
		
	
		
			
				
					|  |  |  |  |                      full_output=1, | 
			
		
	
		
			
				
					|  |  |  |  |                      **opts | 
			
		
	
		
			
				
					|  |  |  |  |                     ) | 
			
		
	
		
			
				
					|  |  |  |  |     keys = ('xopt', 'fopt', 'funcalls', 'gradcalls', 'warnflag', 'allvecs') | 
			
		
	
		
			
				
					|  |  |  |  |   elif method == 'anneal': | 
			
		
	
		
			
				
					|  |  |  |  |     rslt = anneal(fun_err2, | 
			
		
	
		
			
				
					|  |  |  |  |                   x0=Guess, # initial coefficient guess | 
			
		
	
	
		
			
				
					|  |  |  | 
 |