|
|
@ -1,4 +1,4 @@ |
|
|
|
# $Id: fitting.py,v 1.2 2010-05-28 18:43:39 wirawan Exp $ |
|
|
|
# $Id: fitting.py,v 1.3 2010-11-05 02:28:20 wirawan Exp $ |
|
|
|
# |
|
|
|
# |
|
|
|
# wpylib.math.fitting module |
|
|
|
# wpylib.math.fitting module |
|
|
|
# Created: 20100120 |
|
|
|
# Created: 20100120 |
|
|
@ -117,9 +117,12 @@ class Poly_order4(Poly_base): |
|
|
|
for i in xrange(len(x)) ]) |
|
|
|
for i in xrange(len(x)) ]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class fit_result(dict): |
|
|
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
def fit_func(Funct, Data=None, Guess=None, x=None, y=None, |
|
|
|
def fit_func(Funct, Data=None, Guess=None, x=None, y=None, |
|
|
|
debug=10, |
|
|
|
debug=10, |
|
|
|
|
|
|
|
outfmt=1, |
|
|
|
method='leastsq', opts={}): |
|
|
|
method='leastsq', opts={}): |
|
|
|
""" |
|
|
|
""" |
|
|
|
Performs a function fitting. |
|
|
|
Performs a function fitting. |
|
|
@ -137,6 +140,9 @@ def fit_func(Funct, Data=None, Guess=None, x=None, y=None, |
|
|
|
size of y data below. |
|
|
|
size of y data below. |
|
|
|
For a 2-D fitting, for example, x should be a column array. |
|
|
|
For a 2-D fitting, for example, x should be a column array. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The "y" array is a 1-D array of length M, which contain the "measured" |
|
|
|
|
|
|
|
value of the function at every domain point given in "x". |
|
|
|
|
|
|
|
|
|
|
|
Inspect Poly_base, Poly_order2, and other similar function classes in this |
|
|
|
Inspect Poly_base, Poly_order2, and other similar function classes in this |
|
|
|
module to see the example of the Funct function. |
|
|
|
module to see the example of the Funct function. |
|
|
|
|
|
|
|
|
|
|
@ -146,23 +152,40 @@ def fit_func(Funct, Data=None, Guess=None, x=None, y=None, |
|
|
|
(multidimensional) coordinate of the Funct's domain. |
|
|
|
(multidimensional) coordinate of the Funct's domain. |
|
|
|
y is a one-dimensional dataset. |
|
|
|
y is a one-dimensional dataset. |
|
|
|
Or, |
|
|
|
Or, |
|
|
|
* via Data argument (which is a multi-column dataset |
|
|
|
* via Data argument (which is a multi-column dataset, where the first row |
|
|
|
|
|
|
|
is the "y" argument). |
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
|
""" |
|
|
|
global last_fit_rslt, last_chi_sqr |
|
|
|
global last_fit_rslt, last_chi_sqr |
|
|
|
from scipy.optimize import leastsq, anneal |
|
|
|
from scipy.optimize import fmin, leastsq, anneal |
|
|
|
# We want to minimize this error: |
|
|
|
# We want to minimize this error: |
|
|
|
if Data != None: # an alternative way to specifying x and y |
|
|
|
if Data != None: # an alternative way to specifying x and y |
|
|
|
y = Data[0] |
|
|
|
y = Data[0] |
|
|
|
x = Data[1:] # possibly multidimensional! |
|
|
|
x = Data[1:] # possibly multidimensional! |
|
|
|
if hasattr(Funct, "Guess"): |
|
|
|
if hasattr(Funct, "Guess_xy"): |
|
|
|
|
|
|
|
# Try to provide an initial guess |
|
|
|
|
|
|
|
Guess = Funct.Guess_xy(x, y) |
|
|
|
|
|
|
|
elif hasattr(Funct, "Guess"): |
|
|
|
# Try to provide an initial guess |
|
|
|
# Try to provide an initial guess |
|
|
|
|
|
|
|
# This is an older version with y-only argument |
|
|
|
Guess = Funct.Guess(y) |
|
|
|
Guess = Funct.Guess(y) |
|
|
|
elif Guess == None: # VERY OLD, DO NOT USE ANYMORE! |
|
|
|
elif Guess == None: # VERY OLD, DO NOT USE ANYMORE! |
|
|
|
Guess = [ y.mean() ] + [0.0, 0.0] * len(x) |
|
|
|
Guess = [ y.mean() ] + [0.0, 0.0] * len(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if debug < 20: |
|
|
|
fun_err = lambda CC, xx, yy: abs(Funct(CC,xx) - yy) |
|
|
|
fun_err = lambda CC, xx, yy: abs(Funct(CC,xx) - yy) |
|
|
|
fun_err2 = lambda CC, xx, yy: numpy.sum(abs(Funct(CC,xx) - yy)**2) |
|
|
|
fun_err2 = lambda CC, xx, yy: numpy.sum(abs(Funct(CC,xx) - yy)**2) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
def fun_err(CC, xx, yy): |
|
|
|
|
|
|
|
ff = Funct(CC,xx) |
|
|
|
|
|
|
|
r = abs(ff - yy) |
|
|
|
|
|
|
|
print " err: %s << %s << %s, %s" % (r, ff, CC, xx) |
|
|
|
|
|
|
|
return r |
|
|
|
|
|
|
|
def fun_err2(CC, xx, yy): |
|
|
|
|
|
|
|
ff = Funct(CC,xx) |
|
|
|
|
|
|
|
r = numpy.sum(abs(ff - yy)**2) |
|
|
|
|
|
|
|
print " err: %s << %s << %s, %s" % (r, ff, CC, xx) |
|
|
|
|
|
|
|
return r |
|
|
|
|
|
|
|
|
|
|
|
if debug >= 5: |
|
|
|
if debug >= 5: |
|
|
|
print "Guess params:" |
|
|
|
print "Guess params:" |
|
|
@ -175,6 +198,15 @@ def fit_func(Funct, Data=None, Guess=None, x=None, y=None, |
|
|
|
full_output=1, |
|
|
|
full_output=1, |
|
|
|
**opts |
|
|
|
**opts |
|
|
|
) |
|
|
|
) |
|
|
|
|
|
|
|
keys = ('xopt', 'cov_x', 'infodict', 'mesg', 'ier') |
|
|
|
|
|
|
|
elif method == 'fmin': |
|
|
|
|
|
|
|
rslt = fmin(fun_err2, |
|
|
|
|
|
|
|
x0=Guess, # initial coefficient guess |
|
|
|
|
|
|
|
args=(x,y), # data onto which the function is fitted |
|
|
|
|
|
|
|
full_output=1, |
|
|
|
|
|
|
|
**opts |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
keys = ('xopt', 'fopt', 'iter', 'funcalls', 'warnflag', 'allvecs') |
|
|
|
elif method == 'anneal': |
|
|
|
elif method == 'anneal': |
|
|
|
rslt = anneal(fun_err2, |
|
|
|
rslt = anneal(fun_err2, |
|
|
|
x0=Guess, # initial coefficient guess |
|
|
|
x0=Guess, # initial coefficient guess |
|
|
@ -182,15 +214,25 @@ def fit_func(Funct, Data=None, Guess=None, x=None, y=None, |
|
|
|
full_output=1, |
|
|
|
full_output=1, |
|
|
|
**opts |
|
|
|
**opts |
|
|
|
) |
|
|
|
) |
|
|
|
|
|
|
|
keys = ('xopt', 'fopt', 'T', 'funcalls', 'iter', 'accept', 'retval') |
|
|
|
else: |
|
|
|
else: |
|
|
|
raise ValueError, "Unsupported minimization method: %s" % method |
|
|
|
raise ValueError, "Unsupported minimization method: %s" % method |
|
|
|
|
|
|
|
chi_sqr = fun_err2(rslt[0], x, y) |
|
|
|
|
|
|
|
last_chi_sqr = chi_sqr |
|
|
|
last_fit_rslt = rslt |
|
|
|
last_fit_rslt = rslt |
|
|
|
last_chi_sqr = fun_err2(rslt[0], x, y) |
|
|
|
|
|
|
|
if (debug >= 10): |
|
|
|
if (debug >= 10): |
|
|
|
#print "Fit-message: ", rslt[] |
|
|
|
#print "Fit-message: ", rslt[] |
|
|
|
print "Fit-result:" |
|
|
|
print "Fit-result:" |
|
|
|
print "\n".join([ "%2d %s" % (ii, rslt[ii]) for ii in xrange(len(rslt)) ]) |
|
|
|
print "\n".join([ "%2d %s" % (ii, rslt[ii]) for ii in xrange(len(rslt)) ]) |
|
|
|
|
|
|
|
if debug >= 1: |
|
|
|
print "params = ", rslt[0] |
|
|
|
print "params = ", rslt[0] |
|
|
|
print "chi square = ", last_chi_sqr / len(y) |
|
|
|
print "chi square = ", last_chi_sqr / len(y) |
|
|
|
|
|
|
|
if outfmt == 1: |
|
|
|
return rslt[0] |
|
|
|
return rslt[0] |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
rec = fit_result() |
|
|
|
|
|
|
|
for (k, v) in zip(keys, rslt): |
|
|
|
|
|
|
|
rec[k] = v |
|
|
|
|
|
|
|
rec['chi_square'] = chi_sqr |
|
|
|
|
|
|
|
return rec |
|
|
|
|
|
|
|
|
|
|
|