|
|
|
@ -15,6 +15,12 @@ import numpy |
|
|
|
|
import scipy.optimize |
|
|
|
|
from wpylib.db.result_base import result_base |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
import lmfit |
|
|
|
|
HAS_LMFIT = True |
|
|
|
|
except ImportError: |
|
|
|
|
HAS_LMFIT = False |
|
|
|
|
|
|
|
|
|
last_fit_rslt = None |
|
|
|
|
last_chi_sqr = None |
|
|
|
|
|
|
|
|
@ -129,7 +135,7 @@ class fit_result(result_base): |
|
|
|
|
""" |
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
def fit_func(Funct, Data=None, Guess=None, Params=None, |
|
|
|
|
x=None, y=None, |
|
|
|
|
w=None, dy=None, |
|
|
|
|
debug=0, |
|
|
|
@ -152,6 +158,12 @@ def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
size of y data below. |
|
|
|
|
For a 2-D fitting, for example, x should be a column array. |
|
|
|
|
|
|
|
|
|
An input guess for the parameters can be specified via Guess argument. |
|
|
|
|
It is an ordered list of scalar values for these parameters. |
|
|
|
|
|
|
|
|
|
The Params argument is reserved for lmfit-style fitting. |
|
|
|
|
It is ignored in other cases. |
|
|
|
|
|
|
|
|
|
The "y" array is a 1-D array of length M, which contain the "measured" |
|
|
|
|
value of the function at every domain point given in "x". |
|
|
|
|
|
|
|
|
@ -172,6 +184,14 @@ def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
* via Data argument (which is a multi-column dataset, where the first row |
|
|
|
|
is the "y" argument). |
|
|
|
|
|
|
|
|
|
OUTPUT |
|
|
|
|
|
|
|
|
|
By default, only the fitted parameters are returned. |
|
|
|
|
To return as complete information as possible, use outfmt=0. |
|
|
|
|
The return value will be a struct-like object (class: fit_result). |
|
|
|
|
|
|
|
|
|
DEBUGGING |
|
|
|
|
|
|
|
|
|
Debugging and other investigations can be done with "Funct_hook", which, |
|
|
|
|
if defined, will be called every time right after "Funct" is called. |
|
|
|
|
It is called with the following signature: |
|
|
|
@ -181,6 +201,23 @@ def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
r := f(C,x) - y |
|
|
|
|
Note that the reference to the hook object is passed as the first argument |
|
|
|
|
to facilitate object oriented programming. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SUPPORT FOR LMFIT MODULE |
|
|
|
|
|
|
|
|
|
This routine also supports the lmfit module. |
|
|
|
|
In this case, the Funct object must supply additional attributes: |
|
|
|
|
* param_names: an ordered list of parameter names. |
|
|
|
|
This is used in the case that Params argument is not defined. |
|
|
|
|
|
|
|
|
|
Input parameters can be specified ahead of time in the following ways: |
|
|
|
|
* If Params is None (default), then unconstrained minimization is done |
|
|
|
|
and the necessary Parameter objects are created on-the fly. |
|
|
|
|
* If Params is a Parameters object, then they are used. |
|
|
|
|
Note that these parameters *will* be clobbered! |
|
|
|
|
|
|
|
|
|
The input Guess parameter can be set to False, in which case Params *must* |
|
|
|
|
be defined and the initial values will be used as Guess. |
|
|
|
|
""" |
|
|
|
|
global last_fit_rslt, last_chi_sqr |
|
|
|
|
from scipy.optimize import fmin, fmin_bfgs, leastsq, anneal |
|
|
|
@ -194,9 +231,27 @@ def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
x = numpy.asarray(x) |
|
|
|
|
y = numpy.asarray(y) |
|
|
|
|
|
|
|
|
|
if debug >= 1: |
|
|
|
|
print "fit_func: using function=%s, minimizer=%s" \ |
|
|
|
|
% (repr(Funct), method) |
|
|
|
|
|
|
|
|
|
if debug >= 10: |
|
|
|
|
print "fit routine opts = ", opts |
|
|
|
|
print "Dimensionality of the domain is: ", len(x) |
|
|
|
|
|
|
|
|
|
if method.startswith("lmfit:"): |
|
|
|
|
if not HAS_LMFIT: |
|
|
|
|
raise ValueError, \ |
|
|
|
|
"Module lmfit is not found, cannot use `%s' minimization method." \ |
|
|
|
|
% (method,) |
|
|
|
|
use_lmfit = True |
|
|
|
|
from lmfit import minimize, Parameters, Parameter |
|
|
|
|
param_names = Funct.param_names |
|
|
|
|
if debug >= 10: |
|
|
|
|
print "param names: ", param_names |
|
|
|
|
else: |
|
|
|
|
use_lmfit = False |
|
|
|
|
|
|
|
|
|
if Guess != None: |
|
|
|
|
pass |
|
|
|
|
elif hasattr(Funct, "Guess_xy"): |
|
|
|
@ -209,9 +264,30 @@ def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
elif Guess == None: # VERY OLD, DO NOT USE ANYMORE! |
|
|
|
|
Guess = [ y.mean() ] + [0.0, 0.0] * len(x) |
|
|
|
|
|
|
|
|
|
if use_lmfit: |
|
|
|
|
if Params == None: |
|
|
|
|
# Creates a default list of Parameters for use later |
|
|
|
|
assert Guess != False |
|
|
|
|
Params = Parameters() |
|
|
|
|
for (g,pn) in zip(Guess, param_names): |
|
|
|
|
Params.add(pn, value=g) |
|
|
|
|
else: |
|
|
|
|
if Guess == None or Guess == False: |
|
|
|
|
# copy the Params' values to Guess |
|
|
|
|
Guess = [ Params[pn].value for pn in param_names ] |
|
|
|
|
else: |
|
|
|
|
# copy the Guess values onto the Params' values |
|
|
|
|
for (g,pn) in zip(Guess, param_names): |
|
|
|
|
Params[pn].value = g |
|
|
|
|
|
|
|
|
|
if debug >= 10: |
|
|
|
|
print "lmfit guess parameters:" |
|
|
|
|
for k1 in Params: |
|
|
|
|
print " - ", Params[k1] |
|
|
|
|
|
|
|
|
|
if debug >= 5: |
|
|
|
|
print "Guess params:" |
|
|
|
|
print Guess |
|
|
|
|
print " ", Guess |
|
|
|
|
|
|
|
|
|
if Funct_hook != None: |
|
|
|
|
if not hasattr(Funct_hook, "__call__"): |
|
|
|
@ -221,9 +297,9 @@ def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
reference data points: |
|
|
|
|
|
|
|
|
|
* CC = current function parameters |
|
|
|
|
* xx = domain points of the ("experimental") data |
|
|
|
|
* yy = target points of the ("experimental") data |
|
|
|
|
* ww = weights of the ("experimental") data |
|
|
|
|
* xx = domain points of the ("measured") data |
|
|
|
|
* yy = target points of the ("measured") data |
|
|
|
|
* ww = weights of the ("measured") data (usually, 1/error**2 of the data) |
|
|
|
|
""" |
|
|
|
|
ff = Funct(CC,xx) |
|
|
|
|
r = (ff - yy) * ww |
|
|
|
@ -255,6 +331,7 @@ def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
# Full result is stored in rec |
|
|
|
|
rec = fit_result() |
|
|
|
|
extra_keys = {} |
|
|
|
|
chi_sqr = None |
|
|
|
|
if method == 'leastsq': |
|
|
|
|
# modified Levenberg-Marquardt algorithm |
|
|
|
|
rslt = leastsq(fun_err, |
|
|
|
@ -305,8 +382,71 @@ def fit_func(Funct, Data=None, Guess=None, |
|
|
|
|
**opts |
|
|
|
|
) |
|
|
|
|
keys = ('xopt', 'fopt', 'T', 'funcalls', 'iter', 'accept', 'retval') |
|
|
|
|
elif use_lmfit: |
|
|
|
|
submethod = method.split(":",1)[1] |
|
|
|
|
minrec = minimize(fun_err, Params, |
|
|
|
|
args=(x,y,sqrtw), |
|
|
|
|
method=submethod, |
|
|
|
|
# backend ("real" minimizer) options: |
|
|
|
|
full_output=1, |
|
|
|
|
**opts |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
xopt = [ Params[k1].value for k1 in param_names ] |
|
|
|
|
keys = ('xopt', 'minobj', 'params') |
|
|
|
|
rslt = [ xopt, minrec, Params ] |
|
|
|
|
# map the output values (in the Minimizer instance, minrec), to |
|
|
|
|
# the same keyword as other methods for backward compatiblity. |
|
|
|
|
rec['funcalls'] = minrec.nfev |
|
|
|
|
try: |
|
|
|
|
chi_sqr = minrec.chi_sqr |
|
|
|
|
except: |
|
|
|
|
pass |
|
|
|
|
# These seem to be particular to leastsq: |
|
|
|
|
try: |
|
|
|
|
rec['ier'] = minrec.ier |
|
|
|
|
except: |
|
|
|
|
pass |
|
|
|
|
try: |
|
|
|
|
rec['mesg'] = minrec.lmdif_message |
|
|
|
|
except: |
|
|
|
|
pass |
|
|
|
|
try: |
|
|
|
|
rec['message'] = minrec.message |
|
|
|
|
except: |
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
# Added estimate of fit parameter uncertainty (matching GNUPLOT parameter |
|
|
|
|
# uncertainty. |
|
|
|
|
# The error is estimated to be the diagonal of cov_x, multiplied by the WSSR |
|
|
|
|
# (chi_square below) and divided by the number of fit degrees of freedom. |
|
|
|
|
# I used newer scipy.optimize.curve_fit() routine as my cheat sheet here. |
|
|
|
|
if outfmt == 0: |
|
|
|
|
try: |
|
|
|
|
has_errorbars = minrec.errorbars |
|
|
|
|
except: |
|
|
|
|
has_errorbars = False |
|
|
|
|
|
|
|
|
|
if has_errorbars: |
|
|
|
|
try: |
|
|
|
|
rec['xerr'] = [ Params[k1].stderr for k1 in param_names ] |
|
|
|
|
except: |
|
|
|
|
# it shouldn't fail like this! |
|
|
|
|
import warnings |
|
|
|
|
warnings.warn("wpylib.math.fitting.fit_func: Fail to get standard error of the fit parameters") |
|
|
|
|
|
|
|
|
|
if debug >= 10: |
|
|
|
|
if 'xerr' in rec: |
|
|
|
|
print "param errorbars are found:" |
|
|
|
|
print " ", tuple(rec['xerr']) |
|
|
|
|
else: |
|
|
|
|
print "param errorbars are NOT found!" |
|
|
|
|
|
|
|
|
|
else: |
|
|
|
|
raise ValueError, "Unsupported minimization method: %s" % method |
|
|
|
|
|
|
|
|
|
# Final common post-processing: |
|
|
|
|
if chi_sqr == None: |
|
|
|
|
chi_sqr = fun_err2(rslt[0], x, y, sqrtw) |
|
|
|
|
last_chi_sqr = chi_sqr |
|
|
|
|
last_fit_rslt = rslt |
|
|
|
|