parent
3a22bb1e99
commit
9e62d32873
1 changed files with 164 additions and 0 deletions
@ -0,0 +1,164 @@ |
|||||||
|
# $Id: fitting.py,v 1.1 2010-01-22 18:44:59 wirawan Exp $ |
||||||
|
# |
||||||
|
# wpylib.math.fitting module |
||||||
|
# Created: 20100120 |
||||||
|
# Wirawan Purwanto |
||||||
|
# |
||||||
|
# Imported 20100120 from $PWQMC77/expt/Hybrid-proj/analyze-Eh.py |
||||||
|
# (dated 20090323). |
||||||
|
# |
||||||
|
# Some references on fitting: |
||||||
|
# * http://stackoverflow.com/questions/529184/simple-multidimensional-curve-fitting |
||||||
|
# * http://www.scipy.org/Cookbook/OptimizationDemo1 (not as thorough, but maybe useful) |
||||||
|
|
||||||
|
import numpy |
||||||
|
import scipy.optimize |
||||||
|
|
||||||
|
last_fit_rslt = None |
||||||
|
last_chi_sqr = None |
||||||
|
|
||||||
|
class Poly_base(object): |
||||||
|
"""Typical base class for a function to fit a polynomial. (?) |
||||||
|
|
||||||
|
The following members must be defined to use the basic features in |
||||||
|
this class---unless the methods are redefined appropriately: |
||||||
|
* order = the order (maximum exponent) of the polynomial. |
||||||
|
* dim = dimensionality of the function domain (i.e. the "x" coordinate). |
||||||
|
A 2-dimensional (y vs x) fitting will have dim==1. |
||||||
|
A 3-dimensional (z vs (x,y)) fitting will have dim==2. |
||||||
|
And so on. |
||||||
|
""" |
||||||
|
# Must set the following: |
||||||
|
# * order = ? |
||||||
|
# * dim = ? |
||||||
|
#def __call__(C, x): |
||||||
|
# raise NotImplementedError, "must implement __call__" |
||||||
|
def __init__(self, xdata=None, ydata=None, ndim=None): |
||||||
|
if xdata != None: |
||||||
|
self.dim = len(xdata) |
||||||
|
elif ndim != None: |
||||||
|
self.dim = ndim |
||||||
|
else: |
||||||
|
raise ValueError, "Either xdata or ndim argument must be supplied" |
||||||
|
if ydata: self.guess = [ numpy.mean(ydata) ] + [0.0] * (self.order*self.dim) |
||||||
|
def Guess(self, ydata): |
||||||
|
"""The simplest guess: set the parameter for the constant term to <y>, and |
||||||
|
the rest to zero. In general, this may not be the best.""" |
||||||
|
return [ numpy.mean(ydata) ] + [0.0] * (self.NParams() - 1) |
||||||
|
def NParams(self): |
||||||
|
'''Default NParams for polynomial without cross term.''' |
||||||
|
return 1 + self.order*self.dim |
||||||
|
|
||||||
|
|
||||||
|
class Poly_order2(Poly_base): |
||||||
|
"""Polynomial of order 2 without cross terms.""" |
||||||
|
order = 2 |
||||||
|
def __call__(self, C, x): |
||||||
|
return C[0] \ |
||||||
|
+ sum([ C[i*2+1] * x[i] + C[i*2+2] * x[i]**2 \ |
||||||
|
for i in xrange(len(x)) ]) |
||||||
|
|
||||||
|
class Poly_order2_only(Poly_base): |
||||||
|
"""Polynomial of order 2 without cross terms. |
||||||
|
The linear terms are deleted.""" |
||||||
|
order = 1 # HACK: the linear term is deleted |
||||||
|
def __call__(self, C, x): |
||||||
|
return C[0] \ |
||||||
|
+ sum([ C[i+1] * x[i]**2 \ |
||||||
|
for i in xrange(len(x)) ]) |
||||||
|
|
||||||
|
class Poly_order2x_only(Poly_base): |
||||||
|
'''Order-2-only polynomial with all the cross terms.''' |
||||||
|
order = 2 # but not used |
||||||
|
def __call__(self, C, x): |
||||||
|
ndim = self.dim |
||||||
|
# Reorganize the coeffs in the form of symmetric square matrix |
||||||
|
# For 4x4 it will become like: |
||||||
|
# [ 1, 5, 6, 7] |
||||||
|
# [ 5, 2, 8, 9] |
||||||
|
# [ 6, 8, 3, 10] |
||||||
|
# [ 7, 9, 10, 4] |
||||||
|
Cmat = numpy.diag(C[1:ndim+1]) |
||||||
|
j = ndim+1 |
||||||
|
for r in xrange(0, ndim-1): |
||||||
|
jnew = j + ndim - 1 - r |
||||||
|
Cmat[r, r+1:] = C[j:jnew] |
||||||
|
Cmat[r+1:, r] = C[j:jnew] |
||||||
|
j = jnew |
||||||
|
#print Cmat |
||||||
|
#print x |
||||||
|
nrec = len(x[0]) # assume a 2-D array |
||||||
|
rslt = numpy.empty((nrec,), dtype=numpy.float64) |
||||||
|
for r in xrange(nrec): |
||||||
|
rslt[r] = C[0] \ |
||||||
|
+ numpy.sum( Cmat * numpy.outer(x[:,r], x[:,r]) ) |
||||||
|
return rslt |
||||||
|
|
||||||
|
def NParams(self): |
||||||
|
# 1 is for the constant term |
||||||
|
return 1 + self.dim * (self.dim + 1) / 2 |
||||||
|
|
||||||
|
class Poly_order3(Poly_base): |
||||||
|
"""Polynomial of order 3 without cross terms. |
||||||
|
The linear terms are deleted.""" |
||||||
|
order = 3 |
||||||
|
def __call__(self, C, x): |
||||||
|
return C[0] \ |
||||||
|
+ sum([ C[i*3+1] * x[i] + C[i*3+2] * x[i]**2 + C[i*3+3] * x[i]**3 \ |
||||||
|
for i in xrange(len(x)) ]) |
||||||
|
|
||||||
|
class Poly_order4(Poly_base): |
||||||
|
"""Polynomial of order 4 without cross terms. |
||||||
|
The linear terms are deleted.""" |
||||||
|
order = 4 |
||||||
|
def __call__(self, C, x): |
||||||
|
return C[0] \ |
||||||
|
+ sum([ C[i*4+1] * x[i] + C[i*4+2] * x[i]**2 + C[i*4+3] * x[i]**3 + C[i*4+4] * x[i]**4 \ |
||||||
|
for i in xrange(len(x)) ]) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def fit_func(Funct, Data=None, Guess=None, x=None, y=None): |
||||||
|
''' |
||||||
|
Funct is a python function (or any callable object) with argument list of |
||||||
|
(C, x), where: |
||||||
|
* C is the cofficients (parameters) to be adjusted by the fitting process |
||||||
|
(it is a sequence or a 1-D array) |
||||||
|
* x is a 2-D array (or sequence of like nature). The "row" size is the dimensionality |
||||||
|
of the domain, while the "column" is the number of data points, whose count must be |
||||||
|
equal to the size of y data below. |
||||||
|
|
||||||
|
Inspect Poly_base, Poly_order2, and other similar function classes in this module |
||||||
|
to see the example of the Funct function. |
||||||
|
|
||||||
|
The measurement (input) datasets, against which the function is to be fitted, |
||||||
|
can be specified in one of two ways: |
||||||
|
* via x and y arguments. x is a multi-column dataset, where each row is the |
||||||
|
(multidimensional) coordinate of the Funct's domain. |
||||||
|
y is a one-dimensional dataset. |
||||||
|
Or, |
||||||
|
* via Data argument (which is a multi-column dataset |
||||||
|
|
||||||
|
''' |
||||||
|
global last_fit_rslt, last_chi_sqr |
||||||
|
from scipy.optimize import leastsq |
||||||
|
# We want to minimize this error: |
||||||
|
fun_err = lambda CC, xx, yy: abs(Funct(CC,xx) - yy) |
||||||
|
if Data != None: # an alternative way to specifying x and y |
||||||
|
y = Data[0] |
||||||
|
x = Data[1:] # possibly multidimensional! |
||||||
|
if hasattr(Funct, "Guess"): |
||||||
|
# Try to provide an initial guess |
||||||
|
Guess = Funct.Guess(y) |
||||||
|
elif Guess == None: # VERY OLD, DO NOT USE ANYMORE! |
||||||
|
Guess = [ y.mean() ] + [0.0, 0.0] * len(x) |
||||||
|
rslt = leastsq(fun_err, |
||||||
|
x0=Guess, # initial coefficient guess |
||||||
|
args=(x,y), # data onto which the function is fitted |
||||||
|
full_output=1) |
||||||
|
last_fit_rslt = rslt |
||||||
|
last_chi_sqr = sum( fun_err(rslt[0], x, y)**2 ) |
||||||
|
print "params = ", rslt[0] |
||||||
|
print "chi square = ", last_chi_sqr / len(y) |
||||||
|
return rslt[0] |
||||||
|
|
Loading…
Reference in new issue