|
|
|
@ -1,5 +1,5 @@ |
|
|
|
|
#!/usr/bin/python |
|
|
|
|
# $Id: text_input.py,v 1.1 2010-09-27 19:54:05 wirawan Exp $ |
|
|
|
|
# $Id: text_input.py,v 1.2 2010-09-30 17:23:34 wirawan Exp $ |
|
|
|
|
# |
|
|
|
|
# wpylib.iofmt.text_input module |
|
|
|
|
# Quick-n-dirty text input utilities |
|
|
|
@ -146,6 +146,13 @@ class text_input(object): |
|
|
|
|
If the tuple contains the third field, it is used as the name of the field; |
|
|
|
|
otherwise the fields are named f0, f1, f2, .... |
|
|
|
|
|
|
|
|
|
Complex data (floating-point only) must be specified as a tuple of two columns |
|
|
|
|
containing the real and imaginary data, like this: |
|
|
|
|
((2, 3), complex, 'ampl') |
|
|
|
|
or |
|
|
|
|
((7, 9), complex) # fine to interleave column with something else |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Additional keyword options: |
|
|
|
|
* deftype: default datatype |
|
|
|
|
* maxcount: maximum number of records to be read |
|
|
|
@ -154,26 +161,50 @@ class text_input(object): |
|
|
|
|
""" |
|
|
|
|
deftype = kwd.get("deftype", float) |
|
|
|
|
|
|
|
|
|
# float_fields extracts the desired columns and converts them to floats |
|
|
|
|
class register_item_t: |
|
|
|
|
flds = [] |
|
|
|
|
cols = [] |
|
|
|
|
complex_types = (complex, numpy.complexfloating) |
|
|
|
|
def add(self, col, fldname, type): |
|
|
|
|
dtype = numpy.dtype(type) |
|
|
|
|
t = dtype.type |
|
|
|
|
dsamp = t() # create a sample |
|
|
|
|
# Special handling for complex: |
|
|
|
|
# -- unfortunately this detection fails because even real |
|
|
|
|
# numbers have its 'imag' attribute: |
|
|
|
|
#dattrs = dir(dsamp) |
|
|
|
|
#if "imag" in dattrs and "real" in dattrs: |
|
|
|
|
if isinstance(dsamp, numpy.complexfloating): |
|
|
|
|
dtype_elem = dsamp.real.dtype |
|
|
|
|
t_elem = dtype_elem.type |
|
|
|
|
conv_func = lambda v, c: t(t_elem(v[c[0]]) + 1j*t_elem(v[c[1]])) |
|
|
|
|
self.cols.append((conv_func, col)) |
|
|
|
|
self.flds.append((fldname, dtype)) |
|
|
|
|
else: |
|
|
|
|
# other datatypes: much easier |
|
|
|
|
# Simply get the string, and use numpy to convert to the datatype |
|
|
|
|
# on-the-fly |
|
|
|
|
conv_func = lambda v, c: t(v[c]) |
|
|
|
|
self.cols.append((conv_func, col)) |
|
|
|
|
self.flds.append((fldname, dtype)) |
|
|
|
|
reg = register_item_t() |
|
|
|
|
|
|
|
|
|
for (i,c) in zip(xrange(len(col_desc)), col_desc): |
|
|
|
|
if type(c) == int: |
|
|
|
|
cols.append(c) |
|
|
|
|
flds.append(('f' + str(i), deftype)) |
|
|
|
|
reg.add(c, 'f' + str(i), deftype) |
|
|
|
|
elif len(c) == 1: |
|
|
|
|
cols.append(c[0]) |
|
|
|
|
flds.append(('f' + str(i), deftype)) |
|
|
|
|
reg.add(c[0], 'f' + str(i), deftype) |
|
|
|
|
elif len(c) == 2: |
|
|
|
|
cols.append(c[0]) |
|
|
|
|
flds.append(('f' + str(i), c[1])) |
|
|
|
|
reg.add(c[0], 'f' + str(i), c[1]) |
|
|
|
|
elif len(c) == 3: |
|
|
|
|
cols.append(c[0]) |
|
|
|
|
flds.append((c[2], c[1])) |
|
|
|
|
reg.add(c[0], c[2], c[1]) |
|
|
|
|
else: |
|
|
|
|
raise ValueError, \ |
|
|
|
|
"Invalid column specification: %s" % (c,) |
|
|
|
|
|
|
|
|
|
#print cols |
|
|
|
|
#print flds |
|
|
|
|
get_fields = lambda vals : tuple([ vals[col] for col in cols ]) |
|
|
|
|
cols = reg.cols |
|
|
|
|
flds = reg.flds |
|
|
|
|
get_fields = lambda vals : tuple([ filt(vals,col) for (filt,col) in cols ]) |
|
|
|
|
if "maxcount" in kwd: |
|
|
|
|
#print "hello" |
|
|
|
|
rslt = [ get_fields(vals.split()) for (c,vals) in zip(xrange(kwd['maxcount']),self) ] |
|
|
|
|