First method: linregr2d_SZ() from Shiwei's email in 2006.master
parent
908a4e0682
commit
87763d6e57
1 changed files with 104 additions and 0 deletions
@ -0,0 +1,104 @@ |
|||||||
|
# |
||||||
|
# wpylib.math.fitting.linear module |
||||||
|
# Created: 20121015 |
||||||
|
# Wirawan Purwanto |
||||||
|
# |
||||||
|
|
||||||
|
""" |
||||||
|
wpylib.math.fitting.linear module |
||||||
|
|
||||||
|
Linear fitting tools. |
||||||
|
""" |
||||||
|
|
||||||
|
import numpy |
||||||
|
from wpylib.math.fitting import fit_result |
||||||
|
|
||||||
|
def linregr2d_SZ(x, y, sigma=None): |
||||||
|
"""Performs a linear least square regression to according to a |
||||||
|
linear model |
||||||
|
|
||||||
|
y(x) = a + b*x , |
||||||
|
|
||||||
|
where the input y has uncertainty given by sigma. |
||||||
|
""" |
||||||
|
from numpy import sum, sqrt |
||||||
|
|
||||||
|
# Based on Shiwei's regr.F code (from email received 20060102). |
||||||
|
# See Linear-regression.txt in my repository of Shiwei's files. |
||||||
|
# See also Numerical Recipes in C, 2nd ed, Sec. 15.2. |
||||||
|
xx = numpy.array(x, copy=False) |
||||||
|
yy = numpy.array(y, copy=False) |
||||||
|
if sigma == None: |
||||||
|
# My addition -- can be dangerous |
||||||
|
# In case of no errorbar, we proceed as if all measurement |
||||||
|
# data have the same uncertainty, taken to be 1. |
||||||
|
ww = numpy.ones_like(y) |
||||||
|
else: |
||||||
|
ww = numpy.array(sigma, copy=False) |
||||||
|
ww **= -2 # make 1/sigma**2 array |
||||||
|
|
||||||
|
e1 = sum(xx * yy * ww) |
||||||
|
e2 = sum(yy * ww) |
||||||
|
d11 = sum(xx * ww) |
||||||
|
d12 = sum(xx**2 * ww) |
||||||
|
d21 = sum(ww) |
||||||
|
d22 = d11 |
||||||
|
|
||||||
|
detinv = 1.0 / (d11*d22 - d12*d21) |
||||||
|
a = (e1*d22 - e2*d12) * detinv |
||||||
|
b = (e2*d11 - e1*d21) * detinv |
||||||
|
varsum = sum((xx*d11 - d12)**2 * ww) |
||||||
|
var = varsum * detinv**2 |
||||||
|
sigma = sqrt(var) |
||||||
|
|
||||||
|
return fit_result( |
||||||
|
fit_method='linregr2d_SZ', |
||||||
|
fit_model='linear', |
||||||
|
a=a, |
||||||
|
b=b, |
||||||
|
sigma=sigma, |
||||||
|
) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def Test_1(): |
||||||
|
"""Testcase 1. |
||||||
|
|
||||||
|
>>> wpylib.math.fitting.linear.Test_1() |
||||||
|
... |
||||||
|
{'a': -1392.3182324234213, |
||||||
|
'b': -0.82241012516149792, |
||||||
|
'fit_method': 'linregr2d_SZ', |
||||||
|
'fit_model': 'linear', |
||||||
|
'sigma': 0.00048320905704467775} |
||||||
|
|
||||||
|
My wlinreg tool (via 'dtextrap' shell script alias gives: |
||||||
|
|
||||||
|
a stats: |
||||||
|
Total number of data : 100000 |
||||||
|
Average : -1392.32 |
||||||
|
Sample standard deviation: 0.000460341 |
||||||
|
Error of the average : 1.45573e-06 (-1.046e-07%) |
||||||
|
b stats: |
||||||
|
Total number of data : 100000 |
||||||
|
Average : -0.822099 |
||||||
|
Sample standard deviation: 0.0803118 |
||||||
|
Error of the average : 0.00025397 (-0.03089%) |
||||||
|
Summary |
||||||
|
a = -1392.31823569246 +/- 0.000460341146124978 = -1392.31824(46) |
||||||
|
b = -0.822098515674071 +/- 0.0803118207916705 = -0.822(80) |
||||||
|
|
||||||
|
""" |
||||||
|
from wpylib.text_tools import make_matrix as mtx |
||||||
|
M = mtx(""" |
||||||
|
# Source: Co+ QMC/CAS(8,11)d26 cc-pwCVQZ-DK result dated 20121015 |
||||||
|
0.01 -1392.32619 0.00047 |
||||||
|
0.005 -1392.32284 0.00037 |
||||||
|
0.0025 -1392.31994 0.00038 |
||||||
|
""") |
||||||
|
x = M[:,0] |
||||||
|
y = M[:,1] |
||||||
|
dy = M[:,2] |
||||||
|
rslt = linregr2d_SZ(x,y,dy) |
||||||
|
print rslt |
||||||
|
return rslt |
Loading…
Reference in new issue