|
|
@ -1,4 +1,4 @@ |
|
|
|
# $Id: fortbin.py,v 1.1 2010-02-08 21:49:54 wirawan Exp $ |
|
|
|
# $Id: fortbin.py,v 1.2 2010-02-19 18:39:17 wirawan Exp $ |
|
|
|
# |
|
|
|
# |
|
|
|
# wpylib.iofmt.fortbin module |
|
|
|
# wpylib.iofmt.fortbin module |
|
|
|
# Created: 20100208 |
|
|
|
# Created: 20100208 |
|
|
@ -15,27 +15,39 @@ import sys |
|
|
|
from wpylib.sugar import ifelse |
|
|
|
from wpylib.sugar import ifelse |
|
|
|
|
|
|
|
|
|
|
|
class fortran_bin_file(object): |
|
|
|
class fortran_bin_file(object): |
|
|
|
"""A tool for reading Fortran binary files.""" |
|
|
|
"""A tool for reading Fortran binary files. |
|
|
|
def __init__(self, filename=None): |
|
|
|
|
|
|
|
self.record_marker_type = numpy.uint32 |
|
|
|
Caveat: On 64-bit systems, typical Fortran implementations still have int==int32 |
|
|
|
self.debug = 100 |
|
|
|
(i.e. the LP64 programming model), unless "-i8" kind of option is enabled. |
|
|
|
|
|
|
|
To use 64-bit default integer, set the default_int attribute to numpy.int64 . |
|
|
|
|
|
|
|
""" |
|
|
|
|
|
|
|
record_marker_type = numpy.uint32 |
|
|
|
|
|
|
|
default_int = numpy.int32 |
|
|
|
|
|
|
|
default_float = numpy.float64 |
|
|
|
|
|
|
|
default_str = numpy.str_ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, filename=None, mode="r"): |
|
|
|
|
|
|
|
self.debug = 0 |
|
|
|
if filename: |
|
|
|
if filename: |
|
|
|
self.open(filename) |
|
|
|
self.open(filename, mode) |
|
|
|
|
|
|
|
|
|
|
|
def open(self, filename): |
|
|
|
def open(self, filename, mode="r"): |
|
|
|
self.F = open(filename, "rb") |
|
|
|
self.F = open(filename, mode+"b") |
|
|
|
|
|
|
|
|
|
|
|
def read(self, *fields, **opts): |
|
|
|
def read(self, *fields, **opts): |
|
|
|
"""Reads a Fortran record. |
|
|
|
"""Reads a Fortran record. |
|
|
|
The description of the fields are given as |
|
|
|
The description of the fields are given as |
|
|
|
(name, dtype, length) tuples.""" |
|
|
|
(name, dtype, length) tuples.""" |
|
|
|
from numpy import fromfile as rd |
|
|
|
from numpy import fromfile as rd |
|
|
|
if self.debug: |
|
|
|
if self.debug or opts.get("debug"): |
|
|
|
dbg = lambda msg : sys.stderr.write(msg) |
|
|
|
dbg = lambda msg : sys.stderr.write(msg) |
|
|
|
else: |
|
|
|
else: |
|
|
|
dbg = lambda msg : None |
|
|
|
dbg = lambda msg : None |
|
|
|
def fld_count(f): |
|
|
|
def fld_count(f): |
|
|
|
if len(f) > 2: |
|
|
|
if len(f) > 2: |
|
|
|
|
|
|
|
if isinstance(f[2], (list,tuple)): |
|
|
|
|
|
|
|
return numpy.product(f[2]) |
|
|
|
|
|
|
|
else: |
|
|
|
return f[2] |
|
|
|
return f[2] |
|
|
|
else: |
|
|
|
else: |
|
|
|
return 1 |
|
|
|
return 1 |
|
|
@ -52,6 +64,8 @@ class fortran_bin_file(object): |
|
|
|
|
|
|
|
|
|
|
|
if "out" in opts: |
|
|
|
if "out" in opts: |
|
|
|
rslt = opts["out"] |
|
|
|
rslt = opts["out"] |
|
|
|
|
|
|
|
elif "dest" in opts: |
|
|
|
|
|
|
|
rslt = opts["dest"] |
|
|
|
else: |
|
|
|
else: |
|
|
|
rslt = {} |
|
|
|
rslt = {} |
|
|
|
|
|
|
|
|
|
|
@ -67,7 +81,14 @@ class fortran_bin_file(object): |
|
|
|
if len(f) > 2: |
|
|
|
if len(f) > 2: |
|
|
|
(name,Dtyp,Len) = f |
|
|
|
(name,Dtyp,Len) = f |
|
|
|
dtyp = numpy.dtype(Dtyp) |
|
|
|
dtyp = numpy.dtype(Dtyp) |
|
|
|
setval(rslt, name, numpy.fromfile(self.F, dtyp, Len)) |
|
|
|
Len2 = fld_count(f) |
|
|
|
|
|
|
|
if isinstance(f[2], list) or isinstance(f[2], tuple): |
|
|
|
|
|
|
|
# Special handling for shaped arrays |
|
|
|
|
|
|
|
arr = numpy.fromfile(self.F, dtyp, Len2) |
|
|
|
|
|
|
|
setval(rslt, name, arr.reshape(tuple(Len), order='F')) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
setval(rslt, name, numpy.fromfile(self.F, dtyp, Len2)) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
|
else: |
|
|
|
# Special handling for scalars |
|
|
|
# Special handling for scalars |
|
|
|
name = f[0] |
|
|
|
name = f[0] |
|
|
@ -87,3 +108,112 @@ class fortran_bin_file(object): |
|
|
|
|
|
|
|
|
|
|
|
return rslt |
|
|
|
return rslt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def writevals(self, *vals, **opts): |
|
|
|
|
|
|
|
"""Writes a Fortran record. |
|
|
|
|
|
|
|
Only values need to be given, because the types are known. |
|
|
|
|
|
|
|
This is a direct converse of read subroutine.""" |
|
|
|
|
|
|
|
if self.debug: |
|
|
|
|
|
|
|
dbg = lambda msg : sys.stderr.write(msg) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
dbg = lambda msg : None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vals0 = vals |
|
|
|
|
|
|
|
vals = [] |
|
|
|
|
|
|
|
for v in vals0: |
|
|
|
|
|
|
|
if isinstance(v, int): |
|
|
|
|
|
|
|
v2 = self.default_int(v) |
|
|
|
|
|
|
|
if v2 != v: |
|
|
|
|
|
|
|
raise OverflowError, \ |
|
|
|
|
|
|
|
"Integer too large to represent by default int: %d" % v |
|
|
|
|
|
|
|
vals.append(v2) |
|
|
|
|
|
|
|
elif isinstance(v, float): |
|
|
|
|
|
|
|
v2 = self.default_float(v) |
|
|
|
|
|
|
|
# FIXME: check for overflow error like in integer conversion above |
|
|
|
|
|
|
|
vals.append(v2) |
|
|
|
|
|
|
|
elif isinstance(v, str): |
|
|
|
|
|
|
|
v2 = self.default_str(v) |
|
|
|
|
|
|
|
vals.append(v2) |
|
|
|
|
|
|
|
elif "itemsize" in dir(v): |
|
|
|
|
|
|
|
vals.append(v) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
raise NotImplementedError, \ |
|
|
|
|
|
|
|
"Unsupported object of type %s of value %s" \ |
|
|
|
|
|
|
|
(str(type(v)), str(v)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
reclen = numpy.sum([ v.size * v.itemsize for v in vals ], \ |
|
|
|
|
|
|
|
dtype=self.record_marker_type) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dbg("Record length = %d\n" % reclen) |
|
|
|
|
|
|
|
dbg("Item count = %d\n" % len(vals)) |
|
|
|
|
|
|
|
reclen.tofile(self.F) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for v in vals: |
|
|
|
|
|
|
|
if isinstance(v, numpy.ndarray): |
|
|
|
|
|
|
|
# Always store in "Fortran" format, i.e. column major |
|
|
|
|
|
|
|
# Since tofile() always write in the row major format, |
|
|
|
|
|
|
|
# we will transpose it before writing: |
|
|
|
|
|
|
|
v.T.tofile(self.F) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
v.tofile(self.F) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
reclen.tofile(self.F) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def writefields(self, src, *fields, **opts): |
|
|
|
|
|
|
|
if (issubclass(src.__class__, dict) and issubclass(dict, src.__class__)) \ |
|
|
|
|
|
|
|
or "__getitem__" in dir(src): |
|
|
|
|
|
|
|
def getval(d, k): |
|
|
|
|
|
|
|
return d[k] |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
# Assume we can use getattr method: |
|
|
|
|
|
|
|
getval = getattr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vals = [] |
|
|
|
|
|
|
|
for f in fields: |
|
|
|
|
|
|
|
if isinstance(f, str): |
|
|
|
|
|
|
|
vals.append(getval(src, f)) |
|
|
|
|
|
|
|
elif isinstance(f, (list, tuple)): |
|
|
|
|
|
|
|
v = getval(src, f[0]) |
|
|
|
|
|
|
|
# FIXME: check datatype and do necessary conversion if f[1] exists |
|
|
|
|
|
|
|
# Exception: if a string spec is found, we will retrofit the string |
|
|
|
|
|
|
|
# to that kind of object. Strings that are too long are silently |
|
|
|
|
|
|
|
# truncated and those that are too short will have whitespaces |
|
|
|
|
|
|
|
# (ASCII 32) appended. |
|
|
|
|
|
|
|
if len(f) > 1: |
|
|
|
|
|
|
|
dtyp = numpy.dtype(f[1]) |
|
|
|
|
|
|
|
if dtyp.char == 'S': |
|
|
|
|
|
|
|
strlen = dtyp.itemsize |
|
|
|
|
|
|
|
v = self.default_str("%-*s" % (strlen, v[:strlen])) |
|
|
|
|
|
|
|
# FIXME: check dimensionality if f[2] exists |
|
|
|
|
|
|
|
vals.append(v) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
raise ValueError, "Invalid field type: %s" % str(type(f)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def array_major_dim(arr): |
|
|
|
|
|
|
|
"""Tests whether a numpy array is column or row major. |
|
|
|
|
|
|
|
It will return the following: |
|
|
|
|
|
|
|
-1 : row major |
|
|
|
|
|
|
|
+1 : column major |
|
|
|
|
|
|
|
0 : unknown (e.g. no indication one way or the other) |
|
|
|
|
|
|
|
In the case of inconsistent order, we will raise an exception.""" |
|
|
|
|
|
|
|
if len(arr.shape) <= 1: |
|
|
|
|
|
|
|
return 0 |
|
|
|
|
|
|
|
elif arr.flags['C_CONTIGUOUS']: |
|
|
|
|
|
|
|
return -1 |
|
|
|
|
|
|
|
elif arr.flags['F_CONTIGUOUS']: |
|
|
|
|
|
|
|
return +1 |
|
|
|
|
|
|
|
# In case of noncontiguous array, we will have to test it |
|
|
|
|
|
|
|
# based on the strides |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
Lstrides = numpy.array(arr.shape[:-1]) |
|
|
|
|
|
|
|
Rstrides = numpy.array(arr.shape[1:]) |
|
|
|
|
|
|
|
if numpy.all(Lstrides >= Rstrides): |
|
|
|
|
|
|
|
# Categorizes equal consecutive strides to "row major" as well |
|
|
|
|
|
|
|
return -1 |
|
|
|
|
|
|
|
elif numpy.all(Lstrides <= Rstrides): |
|
|
|
|
|
|
|
return +1 |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
raise RuntimeError, \ |
|
|
|
|
|
|
|
"Unable to determine whether this is a row or column major object." |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|