* Added analysis tool to summarize CPUs or group compute nodes based

on their CPUs.
master
Wirawan Purwanto 8 years ago
parent 52619c3688
commit a0ad7c25bc
  1. 161
      sge/dump-cluster-info.py

@ -62,9 +62,12 @@ class sh(object):
return 0
globals().setdefault("NODE_LIST", [])
globals().setdefault("NODE_BAD_LIST", set())
_g = globals()
_g.setdefault("NODE_LIST", [])
#_g.setdefault("NODE_BAD_LIST", set())
_g.setdefault("NODE_BAD_LIST", [])
_g.setdefault("NODE_GOOD_LIST", [])
_g.setdefault("ROOT_DIR", "cluster-info")
def get_node_list():
@ -95,14 +98,17 @@ def rhost_run(host, cmdline):
return rslt
def rhosts_pipe_out(cmdline, filename, hosts=None, rootdir="cluster-info"):
def rhosts_pipe_out(cmdline, filename, hosts=None, rootdir=None):
"""Executes cmdline on each remote host (the list is given in and
"""
global ROOT_DIR
from os.path import dirname, join, isdir
path_join = join
Verb = 100
if hosts is None:
hosts = node_list()
if rootdir is None:
rootdir = ROOT_DIR
for H in hosts:
host_base = H.split(".")[0]
outfname = path_join(rootdir, host_base, filename)
@ -137,12 +143,69 @@ def test_accessible_hosts(hosts=None):
return good_hosts, bad_hosts
def cpuinfo_extract_processor_names(fn, ht=False):
# REFS:
# https://access.redhat.com/discussions/480953
"""Extracts the names of processors from /proc/cpuinfo.
Returns it as a list of processor names.
WARNING: Hyperthreading is detected with a lame methodology,
and only half of the number of cores are reported (i.e. only
physical cores)"""
A = []
siblings_on_socket = None
cores_on_socket = None
with open(fn, "r") as F:
for L in F:
if L.startswith("model name"):
modelname = L.split(":", 1)[1].strip()
A.append(modelname)
elif L.startswith("siblings"):
siblings_on_socket = int(L.split(":", 1)[1].strip())
elif L.startswith("cpu cores"):
cores_on_socket = int(L.split(":", 1)[1].strip())
#print "siblings: ", siblings_on_socket
#print "cores: ", cores_on_socket
# FIXME: Quick-and-dirty solution for hyperthreading;
# see Red Hat site above; not 100% reliable if there are several
# kinds of CPU models, which I don't think I'll ever encountered.
if (not ht) \
and siblings_on_socket is not None \
and cores_on_socket is not None \
and siblings_on_socket != cores_on_socket:
assert cores_on_socket*2 == siblings_on_socket
# ^^otherwise it's not Hyperthreading, the code has to be fixed!
A = A[0:len(A)/2] ### HACK!!!
print("Warning: hyperthreading detected in %s" % fn)
return A
def agg_count_names(namelist):
"""Aggregates the names in namelist to names->count mapping, as a dict.
Useful, e.g. for counting number of unique elements in a list.
"""
A = {}
for C in namelist:
try:
A[C] = A[C] + 1
except KeyError:
A[C] = 1
return A
# Below are the main gather tools
def gather_cpuinfo(hosts=None):
"""Gather tool: for cpuinfo"""
rhosts_pipe_out(("cat", "/proc/cpuinfo"), "cpuinfo.txt", hosts=hosts)
def gather_lscpu(hosts=None):
"""Gather tool: for lscpu"""
rhosts_pipe_out(("lscpu"), "lscpu.txt", hosts=hosts)
def gather_lspci(hosts=None):
"""Gather tool: for lspci"""
@ -152,5 +215,95 @@ def gather_free(hosts=None):
"""Gather tool: for free"""
rhosts_pipe_out(("free"), "free.txt", hosts=hosts)
def gather_uname_a(hosts=None):
"""Gather tool: for free"""
rhosts_pipe_out(("uname", "-a"), "uname-a.txt", hosts=hosts)
#def dict_str_sorted(d):
# return "{" + ", ".
def summarize_cpu(hosts=None):
from pprint import pformat
global ROOT_DIR
hosts_base = [ H.split(".")[0] for H in hosts ]
getfile = lambda H, bn: os.path.join(ROOT_DIR, H, bn)
cpu_info = []
px_hosts_by_type = {}
for H in hosts_base:
px_names = cpuinfo_extract_processor_names(getfile(H, "cpuinfo.txt"))
px_group = agg_count_names(px_names)
#print("%s : %s" % (H, px_group))
px_group_key = pformat(px_group) # use pretty representation
try:
px_hosts_by_type[px_group_key]["hosts"] += [ H ]
except KeyError:
px_hosts_by_type[px_group_key] = {
"cpu_count": px_group,
"hosts": [ H ]
}
return px_hosts_by_type
def print_summarize_cpu(summary):
host_types = sorted(summary.keys())
nproc_grand_total = 0
nnode_grand_total = 0
for T in host_types:
rec = summary[T]
nproc_per_node = sum(rec["cpu_count"].values())
print("%s:: %d hosts, %d procs/node, total %d procs" \
% (T,
len(rec["hosts"]),
nproc_per_node,
len(rec["hosts"]) * nproc_per_node,
))
print("")
print(" " + " ".join(sorted(rec["hosts"])))
print("")
nproc_grand_total += len(rec["hosts"]) * nproc_per_node
nnode_grand_total += len(rec["hosts"])
print("Grand total %d procs" % nproc_grand_total)
print("Grand total %d nodes" % nnode_grand_total)
def tally_summarize_cpu(summary):
"""Tallies up the total number of processors
"""
def analyze_cpu_composition():
summ = summarize_cpu(NODE_GOOD_LIST)
print_summarize_cpu(summ)
def Gather_all():
"""Master gathering routine, to gather everything all at once.
It will take some time to gather every bit of information.
"""
global NODE_GOOD_LIST, NODE_BAD_LIST, NODE_LIST
print("Testing node accesibility...")
NODE_GOOD_LIST, NODE_BAD_LIST = test_accesible_hosts()
print("\nGathering cpuinfo...")
gather_cpuinfo(NODE_GOOD_LIST)
print("\nGathering lscpu...")
gather_lscpu(NODE_GOOD_LIST)
print("\nGathering lspci...")
gather_lspci(NODE_GOOD_LIST)
print("\nGathering free mem...")
gather_free(NODE_GOOD_LIST)
print("\nGathering uname...")
gather_uname_a(NODE_GOOD_LIST)

Loading…
Cancel
Save