* Fortran binary file: Added bulk_read_array1 method for quick reading of

array of (uniform-type) Fortran records.
master
Wirawan Purwanto 10 years ago
parent 02a0222f34
commit d7a65386a3
  1. 60
      iofmt/fortbin.py

@ -116,6 +116,7 @@ class fortran_bin_file(object):
def byte_length(self, *fields):
"""Given a list of field descriptors, determine how many bytes this
set of fields would occupy.
"""
expected_len = sum([ self.fld_count(f) * numpy.dtype(f[1]).itemsize
for f in fields ])
@ -194,6 +195,41 @@ class fortran_bin_file(object):
return rslt
def bulk_read_array1(self, dtype, shape):
"""Reads data that is regularly stored as an array of Fortran records
(all of the same type and length).
Each record must be 'read' individually and validated if the record lengths
are indeed correct.
But this routine will bulk-read all the records at once, and shape it
into an array with that format.
Warning: because we load all the leading and trailing reclen markers, the array
will be larger than the actual size of the data, and the memory will not be
contiguous.
Use copy_subarray below to create the contiguous representation of the data
(per field name).
"""
from numpy import product, fromfile, all
dtype1 = numpy.dtype([('reclen', self.record_marker_type),
('content', dtype),
('reclen2', self.record_marker_type)])
dtype_itemsize = dtype1['content'].itemsize
size = product(shape) # total number of elements to read in bulk
# reads in *ALL* the records in a linear fashion, in one read stmt
arr = fromfile(self.F, dtype1, size)
if not all(arr['reclen'] == dtype_itemsize) \
or not all(arr['reclen2'] == dtype_itemsize):
raise IOError, \
(("Inconsistency detected in record array: " \
"one or more records do not have the expected record length=%d") \
% (dtype_itemsize,))
# Returns only the content--this WILL NOT be contiguous in memory.
return arr['content'].reshape(shape, order='F')
def write_vals(self, *vals, **opts):
"""Writes a Fortran record.
Only values need to be given, because the types are known.
@ -315,3 +351,27 @@ def array_major_dim(arr):
"Unable to determine whether this is a row or column major object."
def copy_subarray(arr, key, order='F'):
"""Given a numpy array of structured datatype, copy out a subarray field
into a new array with contiguous format.
The field accessed by arr[key] must be a fixed-size array.
The order argument can be either 'F' or 'C':
- For 'F' ordering, then the subarray index will become the *first* index.
- For 'C' ordering, then the subarray index will become the *last* index.
"""
subarr = arr[key]
dim = len(arr.shape)
subdim = len(subarr.shape) - dim
if order == 'F':
rslt = numpy.transpose(subarr, axes=list(range(dim, subdim+dim) + range(dim)))
elif order == 'C':
rslt = subarr
else:
raise ValueError, 'Invalid order argument'
# Always return a copy!
if numpy.may_share_memory(rslt, arr):
return rslt.copy(order=order)
else:
return rslt

Loading…
Cancel
Save