* Draft of simple nonlinear fitting module for my use. Still not finished yet.

master
wirawan 15 years ago
parent 3a22bb1e99
commit 9e62d32873
  1. 164
      math/fitting.py

@ -0,0 +1,164 @@
# $Id: fitting.py,v 1.1 2010-01-22 18:44:59 wirawan Exp $
#
# wpylib.math.fitting module
# Created: 20100120
# Wirawan Purwanto
#
# Imported 20100120 from $PWQMC77/expt/Hybrid-proj/analyze-Eh.py
# (dated 20090323).
#
# Some references on fitting:
# * http://stackoverflow.com/questions/529184/simple-multidimensional-curve-fitting
# * http://www.scipy.org/Cookbook/OptimizationDemo1 (not as thorough, but maybe useful)
import numpy
import scipy.optimize
last_fit_rslt = None
last_chi_sqr = None
class Poly_base(object):
"""Typical base class for a function to fit a polynomial. (?)
The following members must be defined to use the basic features in
this class---unless the methods are redefined appropriately:
* order = the order (maximum exponent) of the polynomial.
* dim = dimensionality of the function domain (i.e. the "x" coordinate).
A 2-dimensional (y vs x) fitting will have dim==1.
A 3-dimensional (z vs (x,y)) fitting will have dim==2.
And so on.
"""
# Must set the following:
# * order = ?
# * dim = ?
#def __call__(C, x):
# raise NotImplementedError, "must implement __call__"
def __init__(self, xdata=None, ydata=None, ndim=None):
if xdata != None:
self.dim = len(xdata)
elif ndim != None:
self.dim = ndim
else:
raise ValueError, "Either xdata or ndim argument must be supplied"
if ydata: self.guess = [ numpy.mean(ydata) ] + [0.0] * (self.order*self.dim)
def Guess(self, ydata):
"""The simplest guess: set the parameter for the constant term to <y>, and
the rest to zero. In general, this may not be the best."""
return [ numpy.mean(ydata) ] + [0.0] * (self.NParams() - 1)
def NParams(self):
'''Default NParams for polynomial without cross term.'''
return 1 + self.order*self.dim
class Poly_order2(Poly_base):
"""Polynomial of order 2 without cross terms."""
order = 2
def __call__(self, C, x):
return C[0] \
+ sum([ C[i*2+1] * x[i] + C[i*2+2] * x[i]**2 \
for i in xrange(len(x)) ])
class Poly_order2_only(Poly_base):
"""Polynomial of order 2 without cross terms.
The linear terms are deleted."""
order = 1 # HACK: the linear term is deleted
def __call__(self, C, x):
return C[0] \
+ sum([ C[i+1] * x[i]**2 \
for i in xrange(len(x)) ])
class Poly_order2x_only(Poly_base):
'''Order-2-only polynomial with all the cross terms.'''
order = 2 # but not used
def __call__(self, C, x):
ndim = self.dim
# Reorganize the coeffs in the form of symmetric square matrix
# For 4x4 it will become like:
# [ 1, 5, 6, 7]
# [ 5, 2, 8, 9]
# [ 6, 8, 3, 10]
# [ 7, 9, 10, 4]
Cmat = numpy.diag(C[1:ndim+1])
j = ndim+1
for r in xrange(0, ndim-1):
jnew = j + ndim - 1 - r
Cmat[r, r+1:] = C[j:jnew]
Cmat[r+1:, r] = C[j:jnew]
j = jnew
#print Cmat
#print x
nrec = len(x[0]) # assume a 2-D array
rslt = numpy.empty((nrec,), dtype=numpy.float64)
for r in xrange(nrec):
rslt[r] = C[0] \
+ numpy.sum( Cmat * numpy.outer(x[:,r], x[:,r]) )
return rslt
def NParams(self):
# 1 is for the constant term
return 1 + self.dim * (self.dim + 1) / 2
class Poly_order3(Poly_base):
"""Polynomial of order 3 without cross terms.
The linear terms are deleted."""
order = 3
def __call__(self, C, x):
return C[0] \
+ sum([ C[i*3+1] * x[i] + C[i*3+2] * x[i]**2 + C[i*3+3] * x[i]**3 \
for i in xrange(len(x)) ])
class Poly_order4(Poly_base):
"""Polynomial of order 4 without cross terms.
The linear terms are deleted."""
order = 4
def __call__(self, C, x):
return C[0] \
+ sum([ C[i*4+1] * x[i] + C[i*4+2] * x[i]**2 + C[i*4+3] * x[i]**3 + C[i*4+4] * x[i]**4 \
for i in xrange(len(x)) ])
def fit_func(Funct, Data=None, Guess=None, x=None, y=None):
'''
Funct is a python function (or any callable object) with argument list of
(C, x), where:
* C is the cofficients (parameters) to be adjusted by the fitting process
(it is a sequence or a 1-D array)
* x is a 2-D array (or sequence of like nature). The "row" size is the dimensionality
of the domain, while the "column" is the number of data points, whose count must be
equal to the size of y data below.
Inspect Poly_base, Poly_order2, and other similar function classes in this module
to see the example of the Funct function.
The measurement (input) datasets, against which the function is to be fitted,
can be specified in one of two ways:
* via x and y arguments. x is a multi-column dataset, where each row is the
(multidimensional) coordinate of the Funct's domain.
y is a one-dimensional dataset.
Or,
* via Data argument (which is a multi-column dataset
'''
global last_fit_rslt, last_chi_sqr
from scipy.optimize import leastsq
# We want to minimize this error:
fun_err = lambda CC, xx, yy: abs(Funct(CC,xx) - yy)
if Data != None: # an alternative way to specifying x and y
y = Data[0]
x = Data[1:] # possibly multidimensional!
if hasattr(Funct, "Guess"):
# Try to provide an initial guess
Guess = Funct.Guess(y)
elif Guess == None: # VERY OLD, DO NOT USE ANYMORE!
Guess = [ y.mean() ] + [0.0, 0.0] * len(x)
rslt = leastsq(fun_err,
x0=Guess, # initial coefficient guess
args=(x,y), # data onto which the function is fitted
full_output=1)
last_fit_rslt = rslt
last_chi_sqr = sum( fun_err(rslt[0], x, y)**2 )
print "params = ", rslt[0]
print "chi square = ", last_chi_sqr / len(y)
return rslt[0]
Loading…
Cancel
Save