You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
2.4 KiB
86 lines
2.4 KiB
15 years ago
|
#!/usr/bin/ipython -pylab
|
||
|
#
|
||
|
# $Id: graph_digitizer.py,v 1.1 2009-12-04 19:30:26 wirawan Exp $
|
||
|
#
|
||
|
# Created: 20091204
|
||
|
# Wirawan Purwanto
|
||
|
#
|
||
|
# Simple and dirty utility module to digitize a graph (e.g. those image files
|
||
|
# obtained from a journal article PDF).
|
||
|
#
|
||
|
|
||
|
import numpy
|
||
|
|
||
|
def make_matrix(Str, debug=None):
|
||
|
"""Simple tool to convert a string like
|
||
|
'''1 2 3
|
||
|
4 5 6
|
||
|
7 8 9'''
|
||
|
into a numpy matrix (or, actually, an array object)."""
|
||
|
if isinstance(Str, numpy.matrix):
|
||
|
return numpy.array(Str)
|
||
|
elif isinstance(Str, numpy.ndarray):
|
||
|
if len(Str.shape) == 2:
|
||
|
return Str.copy()
|
||
|
else:
|
||
|
raise ValueError, "Cannot make matrix out of non-2D array"
|
||
|
Str2 = ";".join([ row.rstrip().rstrip(";") for row in Str.split("\n") if row.strip() != "" ])
|
||
|
rslt = numpy.matrix(Str2)
|
||
|
if debug: print rslt
|
||
|
return numpy.array(rslt)
|
||
|
|
||
|
def get_axis_scaler(data, axis):
|
||
|
"""Simple routine to obtain the scaling factor from pixel coordinate to
|
||
|
x or y value. The `data' string argument is a literal table like:
|
||
|
xpixel ypixel xvalue
|
||
|
...
|
||
|
or
|
||
|
xpixel ypixel yvalue
|
||
|
...
|
||
|
Only linear scale is supported."""
|
||
|
from scipy import stats
|
||
|
datamtx = make_matrix(data)
|
||
|
|
||
|
if axis == "x":
|
||
|
xx = datamtx[:,0]
|
||
|
yy = datamtx[:,2]
|
||
|
else:
|
||
|
xx = datamtx[:,1]
|
||
|
yy = datamtx[:,2]
|
||
|
|
||
|
# example from
|
||
|
# http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/python/lin_reg
|
||
|
(gradient, intercept, r_value, p_value, std_err) = stats.linregress(xx,yy)
|
||
|
print gradient, intercept, r_value, p_value, std_err
|
||
|
|
||
|
#return (float(gradient[0]), float(intercept[0]))
|
||
|
return (gradient, intercept)
|
||
|
|
||
|
|
||
|
class axes_scaler:
|
||
|
"""The main engine to "unscale" the graph's data points from pixel (x,y) to
|
||
|
true axis (x,y) value. Only linear axis is supported here."""
|
||
|
|
||
|
def __init__(self, data_x, data_y):
|
||
|
"""Initialize the axis scalers (x and y) from a given `pixel -> axis value'
|
||
|
mapping."""
|
||
|
self.init(data_x, data_y)
|
||
|
|
||
|
def init(self, data_x, data_y):
|
||
|
self.xscaler = get_axis_scaler(data_x, "x")
|
||
|
self.yscaler = get_axis_scaler(data_y, "y")
|
||
|
|
||
|
def __call__(self, x, y):
|
||
|
return ((self.xscaler[0]*x + self.xscaler[1]), \
|
||
|
(self.yscaler[0]*y + self.yscaler[1]))
|
||
|
|
||
|
def scale_many(self, data):
|
||
|
mtx = make_matrix(data)
|
||
|
rslt = []
|
||
|
for row in mtx:
|
||
|
(x, y) = row[0], row[1]
|
||
|
rslt.append(list( self(x, y) ))
|
||
|
#print x, y
|
||
|
return numpy.array(rslt)
|
||
|
|