SGE cluster at a given snapshot in time. At present the usage is broken down by the user; other categories can be added in the future.master
parent
4f28615bf0
commit
34a7659f3d
1 changed files with 167 additions and 0 deletions
@ -0,0 +1,167 @@ |
||||
#!/usr/bin/env python |
||||
# |
||||
# Created: 20160829 |
||||
# Wirawan Purwanto |
||||
|
||||
""" |
||||
show-usage-current.py |
||||
--------------------- |
||||
|
||||
Shows the instantaneous usage of the cluster per user at current time. |
||||
Based on qstat -f output. |
||||
|
||||
Usage: |
||||
|
||||
1) Using the current qstat -f data (saving that data to the |
||||
`qstat-f-<date>-<time>.txt` file: |
||||
|
||||
python show-cluster-usage.py |
||||
|
||||
2) Using a saved qstat -f output: |
||||
|
||||
python show-cluster-usage.py <saved-qstat-f.txt> |
||||
""" |
||||
|
||||
import os |
||||
import re |
||||
import subprocess |
||||
import sys |
||||
|
||||
|
||||
def analyze_cluster_usage_by_users(qstat_f): |
||||
"""Provides a summary analysis of cluster usage by users. |
||||
|
||||
Input: `qstat_f` is a list (or iterable) of text lines yielded by |
||||
`qstat -f` command. |
||||
|
||||
Output: total aggregate usage per user, given as dict with usernames |
||||
as the keys. |
||||
""" |
||||
usage = {} |
||||
for L in qstat_f: |
||||
if re.match(r'^ [0-9]+ ', L): |
||||
F = L.split() |
||||
# For running jobs there are possibly more than 8 fields, |
||||
# but we care only for these 8 |
||||
(jobid, priority, jobname, user, status, Date, Time, numcores) = F[:8] |
||||
|
||||
if status == "r": |
||||
try: |
||||
taskid = F[8] |
||||
xjobid = jobid + ":" + taskid |
||||
except IndexError: |
||||
xjobid = jobid |
||||
|
||||
try: |
||||
urec = usage[user] |
||||
except KeyError: |
||||
urec = { |
||||
'user': user, |
||||
'jobids': set(), |
||||
'xjobids': set(), |
||||
'cores': 0, |
||||
} |
||||
usage[user] = urec |
||||
|
||||
urec['jobids'].add(jobid) |
||||
urec['xjobids'].add(xjobid) |
||||
urec['cores'] += int(numcores) |
||||
return usage |
||||
|
||||
|
||||
def print_cluster_usage_by_users(usage): |
||||
"""Prints the instantaneous usage-per-user breakdown of the cluster. |
||||
|
||||
Input: `usage` is the aggregated instantaneous cluster usage as reported |
||||
by the analyze_cluster_usage_by_users() function. |
||||
""" |
||||
cur_users = usage.keys() |
||||
# Sort based on total core usage, descending manner |
||||
cmp_usage = lambda u1, u2: -cmp(usage[u1]['cores'], usage[u2]['cores']) |
||||
cur_users_sorted = sorted(cur_users, cmp=cmp_usage) |
||||
fmt = "%-12s %8d %8d %8d" |
||||
|
||||
print(str_fmt_heading(fmt) % ("user", "numcores", "numjobs", "numtasks")) |
||||
|
||||
for u in cur_users_sorted: |
||||
urec = usage[u] |
||||
print(fmt % (urec['user'], |
||||
urec['cores'], |
||||
len(urec['jobids']), |
||||
len(urec['xjobids']))) |
||||
|
||||
|
||||
|
||||
def main_default(save_qstat=True): |
||||
"""Main default function: |
||||
- By default we invoke qstat -f and prints the analysis. |
||||
- If argv[1] is given, then we read in the file and |
||||
use that for the analysis. |
||||
""" |
||||
from time import localtime, strftime |
||||
|
||||
dtime = localtime() |
||||
dtimestr = strftime("%Y%m%d-%H%M", dtime) |
||||
|
||||
if len(sys.argv) > 1: |
||||
qstat_f_current = open(sys.argv[1], "r").read().splitlines() |
||||
else: |
||||
qstat_f_current = pipe_out(('qstat', '-f'), split=True) |
||||
if save_qstat: |
||||
with open("qstat-f-%s.txt" % dtimestr, "w") as F: |
||||
F.write("\n".join(qstat_f_current)) |
||||
F.write("\n") |
||||
|
||||
summary = analyze_cluster_usage_by_users(qstat_f_current) |
||||
print_cluster_usage_by_users(summary) |
||||
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- |
||||
# Support tools below |
||||
# --------------------------------------------------------------------------- |
||||
|
||||
def pipe_out(args, split=False, shell=False): |
||||
"""Executes a shell command, piping out the stdout to python for parsing. |
||||
This is my customary shortcut for backtick operator. |
||||
The result is either a single string (if split==False) or a list of strings |
||||
with EOLs removed (if split==True).""" |
||||
retval = subprocess.Popen(args, stdout=subprocess.PIPE, shell=shell).communicate()[0] |
||||
if not split: |
||||
return retval |
||||
else: |
||||
return retval.splitlines() |
||||
|
||||
|
||||
# Internal variable: don't mess! |
||||
_str_fmt_heading_rx = None |
||||
def str_fmt_heading(fmt): |
||||
"""Replaces a printf-style formatting with one suitable for table heading: |
||||
all non-string conversions are replaced with string conversions, |
||||
preserving the minimum widths.""" |
||||
# Originally from: $PWQMC77/scripts/cost.py and later Cr2_analysis_cbs.py . |
||||
# |
||||
#_str_fmt_heading_rx = None # only for development purposes |
||||
import re |
||||
global _str_fmt_heading_rx |
||||
if _str_fmt_heading_rx is None: |
||||
# Because of complicated regex, I verbosely write it out here: |
||||
_str_fmt_heading_rx = re.compile(r""" |
||||
( |
||||
% # % sign |
||||
(?:\([^)]+\))? # optional '(keyname)' mapping key |
||||
[-+#0 hlL]* # optional conversion flag |
||||
[0-9*]* # optional minimum field width |
||||
) |
||||
((?:\.[0-9]*)?) # optional precision |
||||
[^-+#*0 hlL0-9.%s] # not conv flag, dimensions, nor literal '%', |
||||
# nor 's' conversion specifiers |
||||
""", re.VERBOSE) |
||||
return _str_fmt_heading_rx.sub(r'\1s', fmt) |
||||
|
||||
|
||||
|
||||
# stub main code |
||||
|
||||
if __name__ == "__main__" and not "get_ipython" in globals(): |
||||
main_default() |
Loading…
Reference in new issue